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1. Introduction 

 

In a bar with arbitrary cross-section, the coordinates of the center of gravity as well as 

the bending moments of inertia can be calculated analytically, i.e. using closed-form 

relationships. However, shear areas as well as torsional constant can be calculated 

analytically only for bars with simple geometry cross-sections, while in all other cases the 

calculation is accomplished only numerically, since solution of boundary value problems are 

required. Boundary value problems can be solved using numerical methods such as the 

Finite Element Method (FEM) or the Boundary Element Method (BEM) [1.1]. 

In order to solve the above boundary value problems and to calculate the shear areas 

and torsional constant, the Boundary Element Method with Scada Pro is implemented. It is 

worth here noting that in the Boundary Element Method only the boundary of the cross-

section (with boundary elements) is discretized (Img.1.1a), unlike the Finite Element 

Method in which the entire interior area of the cross-section is discretized (using surface 

elements) (Img.1.1b). This results in Boundary Element Method, a more simple process of 

discretization and significantly reduce the number of unknowns. It is also stressed that the 

Boundary Element Method has a rigorous mathematical approach, which means that the 

method is so accurate that the results can be considered to be practically precise. 

 

 
(a) 

 
(b) 

Img. 1.1.  Box shaped cross-section discretization with the Boundary Element Method (a) 

& with the Finite Element Method (b). 

 

 

BIBLIOGRAPHY 

[1.1]. Katsikadelis, J.T (2002) Boundary Elements: Theory and Application, Elsevier, 

Amsterdam-London. 
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2. Calculation of torsional constant 

 

Torsion is a load in which a transverse force is applied at a distance from the reference 

axis of the bar, creating in this way a torque vector tM  having the reference axis of the bar 

direction. Torsion in bar elements is created when the plane of the external load does not 

pass through the shear center S of their cross-section. It is also known that the deformation 

of a bar with non-circular cross-section subjected to twisting moment, consists of a rotation 

of the cross-section about the torsional axis of the bar and a torsional warping of the cross-

section (Img.2.1b). 

 

 
Simple torsional support (forked) 

(a) (b) 

Img. 2.1.  Free torsional warping of a rectangular cross-section. 

 

When the torsional warping of the cross-section of the member is not restrained 

(Img.2.1a) the applied twisting moment is undertaken from the Saint-Venant shear stresses 

[2.1]. In this case the angle of twist per unit length remains constant along the bar and the 

torsion is characterized as uniform. 

 

 

Img. 2.2.  Nonuniform torsion of bars due to internal loading and boundary conditions. 
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On the contrary, in most cases either arbitrary torsional boundary conditions are 

applied at the edges or concentrated twisting body forces at any other interior point of the 

bar due to construction requirements. This bar under the action of general twisting loading is 

leaded to nonuniform torsion, while the angle of twist per unit length is no longer constant 

along it (Img.2.2). 

The uniform torsion (Saint Venant torsion) is characterized by the torsional constant of 

the section tI . More specifically, the above-applied constant along the axis of the element 

torque tM  is obtained from the equation  

 

 t t xM GI   (2.1) 

 

where x  stands for the axis of the member, G  is the shear modulus of the material of the 

bar, /x xd dx    denotes the rate of change of the angle of twist θ and it can be regarded as 

the torsional curvature, while the variable tI  is called torsional moment of inertia according 

to Saint Venant or torsional constant and is calculated from the equation 

 

 2 2 S S
tI y z y z d

z y

 



  
        
  (2.2) 

 

(a) 

 
 

 

(b) 

Img. 2.3. Warping function S  for (a) standard UPE-100 and (b) Box shaped bar cross-

sections. 

 

where  ,S y z  is the (torsional) warping function with respect to the shear center S of the 

bar’s cross-section (Img.2.3). The warping function S  expresses the warping (longitudinal 

displacement) which is the result of single-unit relative angle of twist ( 1x  ), while, as the 

same definition introduces, it depends only from the geometry of the section, i.e. it’s its 

independent of the coordinate x  parameter. Finally, the quantity tGI  is called torsional 

rigidity of the cross-section. In the previous, we have consider a bar with constant (along the 

longitudinal axis of the bar) cross-section with an arbitrarily shaped occupying the two-

dimensional simply or multiply connected region Ω of the y; z plane bounded by the curve 

Γ. 

 



Calculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro                                                               

 

 
6 

The calculation of the warping function S  is achieved by solving the following 

boundary value problem [2.2, 2.3] 

 

 
2 2

2

2 2
0S S

S
y z

 


 
   

 
 in Ω (2.3a) 

 S
y zzn yn

n


 


 on Γ (2.3b) 

 

where  cos , /yn y n dy dn   and  sin , /zn z n dz dn   are the directional cosines of the 

external normal vector n  to the boundary of the cross-section. The aforementioned 

boundary value problem arises from the equation of equilibrium of the three-dimensional 

theory of elasticity neglecting the body forces and the physical consideration that the 

traction vector in the direction of the normal vector n vanishes on the free surface of the bar. 

The numerical solution of the boundary value problem stated above (2.3a,b) for the 

evaluation of the warping function S , is accomplished employing a pure BEM approach 

[2.4], that uses only boundary discretization. Finally, since the uniform torsion problem is 

solved by the BEM, the domain integral in equation (2.2) is converted to boundary line 

integral in order to maintain the pure boundary character of the method [2.3]. Thus, once the 

aforementioned warping function is established along the boundary, the torsional constant 

tI  is evaluated using only boundary integration. 

 

 

BIBLIOGRAPHY 
[2.1]. Saint–Venant B. (1855) “Memoire sur la torsion des prismes”, Memoires des Savants 

Etrangers, 14, 233-560. 

[2.2]. Sapountzakis E.J. (2000) “Solution of Nonuniform Torsion of Bars by an Integral 

Equation Method”, Computers and Structures, 77, 659-667. 

[2.3]. Sapountzakis E.J. and Mokos V.G. (2004) “3-D Elastic Beam Element of Composite 

or Homogeneous Cross Section Including Warping Effect with Applications to 

Spatial Structures”, Τechnika Chronika, Scientific Journal of the TCG, Section I, 

Civil Engineering, Rural and Surveying Engineering, 24(1-3), 115-139. 

[2.4]. Katsikadelis, J.T (2002) Boundary Elements: Theory and Application, Elsevier, 

Amsterdam-London. 
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3. Calculation of shear areas 

 

Beam element subjected to transverse forces develops a shear strain, which is almost 

always associated with flexural strain. In case that the direction of the externally imposed 

transverse forces passes through the shear center of the cross-section of the beam, shear 

strain is developed exclusively (absence of torsion), as the shear center is the point of the 

cross-section of which the internally developed shear force passes through (shear stresses 

integral). 

 

 
 

(a) (b) 

 

Img. 3.1. Warping due to shear force for rectangular (a) and square hollow (b) section. 

 

In general cases, in the cross-section of the beam, shear stresses caused by shear forces 

are developed nonuniformly. Thus, the distribution of the shear deformation will be 

nonuniform, which forces the cross-section to shear warping along the longitudinal 

direction, i.e. Bernoulli’s acceptance rule (plane cross-sections remain plane and orthogonal 

to the deformed beam axis after flexural) can no longer be assumed (Euler-Bernoulli 

flexural beam theory) (Img.3.1).  

If the shear force is constant along the axis of the beam and the longitudinal 

displacements causing the warping are not restrained, the applied shear load is undertaken 

only by shear stresses which are maximized at the boundary of the cross-section. This type 

of shear is called uniform. Conversely, if the shear force varies along the beam and/or the 

shear warping is restrained by load or support conditions the shear stress is developed 

nonuniformly and shear is called nonuniform. 

The warping due to shear is generally small compared to the corresponding due to 

torsion, thus the warping stresses due to shear can be reasonably ignored in the analysis. 

Thus, the stress field of the beam due to shear force is usually determined considering 

uniform shearing, while the displacement field including shear warping is taken into 

account indirectly through appropriate shear correction factors. Timoshenko (1921) was the 

first to take into account the influence of the shearing deformation through shear correction 

factors   , by suitably modifying the equilibrium equations of the beam. For that reason 

the beam theory that takes into account the influence of shear deformations is also known as 

Timoshenko flexural beam theory. Note that the inverse of the shear correction factor    is 
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called shear deformation coefficient  1a  , while with the aid of these coefficients the 

shear areas of the cross-section of the beam can be easily derived, as will occur in the next. 

More specifically, the shear areas of the beam cross-section loaded by constant shear 

force ( yQ , zQ components, along y, z axis, respectively) are given by the equations 

 

 


 y y
y

A
A A   ,          




  z z

z

A    (3.1a,b)       

 

while, the cross-section shear rigidities of the Timoshenko’s flexural beam theory are 

identified as 

 

 


 y y
y

GA
GA GA   ,        


 


 z z

z

G
G GA    (3.2a,b)       

 

where, the shear deformation coefficients  y , z  are determined by the equations [3.1-3.3] 

 

 

2 22

2

cy cy
y

y
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d

y zQ

 
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

     
      

      
  (3.3a) 
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cz cz
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z
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a d

y zQ

 



    
      

     
  (3.3b) 

 

In equations (3.3a,b) the cy , cz  are the (shear) warping functions resulting from solving 

the following boundary value problem [3.1-3.3] 

 

    
2 2

2

2 2

1
, c c

c z zz y zz
yy zz

y z Q I z Q I y
GI Iy z

 


 
     

 
             in Ω                  (3.4a) 

  0c

n





                                 on  Γ   (3.4b) 

for cases 

 0yQ  , 0zQ   and by defining  ,cy y z  as the resulting warping function 

 0yQ  , 0zQ   and by defining  ,cz y z  as the resulting warping function 

 

In the previous, we have consider a beam with constant (along the longitudinal axis of the 

beam) cross-section with an arbitrarily shaped occupying the two-dimensional simply or 

multiply connected region Ω of the y; z plane bounded by the curve Γ. The aforementioned 

boundary value problem arises from the equation of equilibrium of the three-dimensional 

theory of elasticity neglecting the body forces and the physical consideration that the 

traction vector in the direction of the normal vector n vanishes on the free surface of the bar. 

The numerical solution of the boundary value problem stated above (3.4a,b) for the 

evaluation of the (shear) warping functions cy  and cz  is accomplished employing a pure 

BEM approach [3.4], that uses only boundary discretization. Finally, since the torsionless 

bending problem (transverse shear loading problem) of beams is solved by the BEM, the 
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domain integrals in equations (3.3a,b) are converted to boundary line integrals in order to 

maintain the pure boundary character of the method [3.1-3.3]. Thus, once the 

aforementioned (shear) warping functions are established along the boundary, the shear 

deformation coefficients  y , z  are evaluated using only boundary integration. 

 

 

BIBLIOGRAPHY 

[3.1]. Sapountzakis E.J. and Mokos V.G. (2005). “A BEM Solution to Transverse Shear 

Loading of Beams”, Computational Mechanics, 36, 384-397. 

[3.2]. Sapountzakis E.J. and Protonotariou V.M. (2008) “A Displacement Solution for 

Transverse Shear Loading of Beams Using the Boundary Element Method”, 

Computers and Structures, 86, 771-779. 

[3.3]. Sapountzakis E.J. and Mokos V.G. (2007) “3-D Beam Element of Composite Cross 

Section Including Warping and Shear Deformation Effects”, Computers and 

Structures, 85, 102-116. 

[3.4]. Katsikadelis, J.T (2002) Boundary Elements: Theory and Application, Elsevier, 

Amsterdam-London. 
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4. Applications with Scada Pro 

 

Next, the cross-sectional properties of four cross-sections (with arbitrary shape) are 

calculated with Scada Pro by applying the Boundary Element Method (BEM), and 

compared with those obtained from a FEM solution using the Nastran software [4.1]. 

 

4.1  Cross-Section 1 

 
(Dimensions in mm) 

 

 

Img. 4.1. Cross-Section 1: Standard Steel Section HEB-200. 

 

Table 4.1.a Cross-Sectional Properties of Cross-Section 1. 

Variables Scada Pro - BEM NASTRAN - FEM [4.1] Divergence (%) 

A(m2) 0.00782 0.00781 0.08 

Iyy(dm4) 0.57032 0.56994 0.07 

Izz(dm4) 0.20035 0.20035 0.00 

Ixx(dm4)=It(dm4) 0.00621 0.00605 2.60 

Asy(m2) 0.00540 0.00554 2.39 

Asz(m2) 0.00174 0.00174 0.06 

 

Table 4.1.b Cross-Sectional Properties of Cross-Section 1. 

Variables 
Thin Tube Theory [4.2] 

(=Approximate theory for It, Asy, Asz ) 
Divergence (%) 

A(m2) 0.00781 0.12 

Iyy(dm4) 0.57000 0.06 

Izz(dm4) 0.20000 0.18 

Ixx(dm4)=It(dm4) 0.00593 4.55 

Asy(m2) 0.00600 11.02 

Asz(m2) 0.00248 42.53 

 

 

 



Calculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro                                                               

 

 
11 

4.2  Cross-Section 2 
 

 
(Dimensions in mm) 

 

 
 

Img. 4.2. Cross-Section 2: Octagonal cross-section with circular hole. 

 

Table 4.2. Cross-Sectional Properties of Cross-Section 2. 

Variables Scada Pro - BEM NASTRAN - FEM [4.1] Divergence (%) 

A(m2) 0.58169 0.58205 0.06 

Iyy(dm4) 386.27760 386.35000 0.02 

Izz(dm4) 386.27714 386.35000 0.02 

Ixx(dm4)=It(dm4) 758.09210 759.19000 0.14 

Asy(m2) 0.36347 0.38305 5.11 

Asz(m2) 0.36346 0.38303 5.11 
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4.3  Cross-Section 3 
 

 
(Dimensions in mm) 

 

 
 

Img. 4.3. Cross-Section 3: Circular cross-section with circular holes. 

 

 

Table 4.3. Cross-Sectional Properties of Cross-Section 3. 

Variables Scada Pro - BEM NASTRAN - FEM [4.1] Divergence (%) 

A(m2) 0.63066 0.63002 0.10 

Iyy(dm4) 430.91242 430.74000 0.04 

Izz(dm4) 430.91014 430.74000 0.04 

Ixx(dm4)=It(dm4) 769.91490 772.56000 0.34 

Asy(m2) 0.41166 0.43080 4.44 

Asz(m2) 0.41167 0.43077 4.43 
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4.4  Cross-Section 4 
 

 
(Dimensions in mm) 

 

 
 

Img. 4.4. Cross-Section 4: Box shaped Cross-Section. 

 

Table 4.4. Cross-Sectional Properties of Cross-Section 4. 

Variables Scada Pro - BEM NASTRAN - FEM [4.1] Divergence (%) 

A(m2) 5.90222 5.90222 0.00 

Iyy(dm4) 358398.38916 358399.00000 0.00 

Izz(dm4) 30854.50044 30854.50000 0.00 

Ixx(dm4)=It(dm4) 69539.06692 69251.80000 0.41 

Asy(m2) 1.78525 1.74197 2.48 

Asz(m2) 3.40743 3.47200 1.86 

 

From the above representative examples the reliability, the accuracy, the effectiveness, 

and the large range of applications for the Scada Pro Software in calculating the cross-

sectional properties of 3-D beam element with an arbitrarily shaped cross section is 

established. 
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