

User Manual

8A. ANALYSIS Part 1: New buildings

Contents

1.	SCENARDS	3
	1.1 NEW	4
	1.2 ACTIVE SCENARIO	
	1.3 EXECUTE	12
~		12
0	BSERVATION	13
	1. S1 STATIC SCENARIO	13
	1. S2 SCENARIO DYNAMICS	16
	1. S3 SCENARIOS E.A.K.	20
	1. P3.1 Seismic analysis and type E.A.K. (Static)	20
	1. C3.§ CRITERIA FOR EXEMPTION FROM THE INSPECTION OF THE STRUCTURAL ADEQUACY OF EXISTING BUILDINGS (GOVERNMENT GAZETTE 350/17-2-2016)	25
	1. P3.2 SEISMIC ANALYSIS AND E.A.K. (DYNAMIC-ET)	29
	1. P4 Seismic Analysis and Type Old 1959-84	33
	1. C5 Seismic Analysis and Type Analysis Old 1984-93	35
	1. S6 EUROCODE SCRIPTS	37
	1. C6.1 ANALYSIS OF EC-8_GREEK AND TYPE STATIC	39
	1. C6.2 ANALYSIS OF EC-8_GREEK AND TYPE DYNAMIC	39
	1. C6.1&C6.2 EC-8_GREEK STATIC AND EC-8_GREEK DYNAMIC ANALYSES	40
	1. S6.§ MODIFICATION OF THE CALCULATION OF THE SEISMIC COEFFICIENT Q	47
	1. S6.§ EARTHQUAKE VICTIM CHECKING	52
	1. S6.§ ACCELERATION FACTOR FOR THE PLANNING OF REPAIRS OF EARTHQUAKE - FIRE DAMAGED BUILDINGS	54
2.	RESULTS	60
	2.1 Combinations	60
	2.1. C1 COMBINATIONS OF SEISMIC / EC-8 AND TYPE STATIC SEISMIC ANALYSIS SCENARIOS	61
	2.1. C2 COMBINATIONS OF SEISMIC / EC-8 AND TYPE DYNAMIC SEISMIC ANALYSIS SCENARIOS	64
	2.1. C3 COMBINATIONS OF SEISMIC AND TYPE PALEO SEISMIC AND TYPE PALEO SEISMIC ANALYSIS SCENARIOS	66
	2.1 COMBINATIONS FOR WIND - SNOW	68
	2.2 Controls	70
	2.2. C1 Seismic Tire Scenario Checks	70
	2.2. S2 ELASTIC ANALYSIS SEISMIC / EAK AND TYPE STATIC& DYNAMIC- ET	70
	2.2. C3 Seismic Tire Scenario Checks Seismic / Paleo	73
	2.2. P4 EC-8 AND STANDARD STATIC & DYNAMIC SEISMIC ANALYSIS SCENARIO CHECKS	73
	2.2. C5 SCENARIO CHECKS OF ELASTIC AND NON-ELASTIC ANALYSES (CAN.EPE)	75
	2.3 EARTHQUAKE ACTION	75
	2.3. S1 SEISMIC ACTION OF SEISMIC ANALYSIS SCENARIOS STATIC ELASTIC ANALYSES	75
	2.3. S2 SEISMIC ACTION OF DYNAMIC & STATIC SEISMIC ELASTIC ANALYSIS SCENARIOS (WITH BUILDING IDENTITY FROM	М
	DYNAMIC ANALYSIS)	76
	2.3. C3 SEISMIC ACTION OF ELASTIC AND INELASTIC ANALYSIS SCENARIOS (CAN.EPE)	77
3.	ADVERTISEMENT	78
	3.1 DISPLAY OF FLASTIC AND NON-FLASTIC ANALYSES (CAN FPF)	

Chapter 8A: Analysis Part 1:New buildings

6	1	BETONA - Scada														
	J	Βασικό	Μοντελοποίηση	Εμφάνιση	Εργαλεία	Πλάκες	Φορτία	Ανάλυση	Αποτελ	εσματα	Διαστασια	λόγηση	Ξυλότυποι	Πρόσ	θετα	
1	Ź,	EC-8_Greek	Static	- 6	1	🖌 🖹		1	ľ	Ľ	×	Z	×	Z	Ŧ	Ŧ
1	Vέo	Ένεργ	νό Σενάριο	Εκτέλεσε	Συνδυασμοί Ελ	εγχοι Σεισμικ δράσι	ή Κατανοι Μαζώ	μή Απόκλιση ν μαζών	Καμπτική Ακαμψία)	Καμπτική (Ακαμψία Ι	Διατμητική Ζ Ακαμψία Χ	Διατμητική Ακαμψία Ζ	Σεισμικές Δυνάμεις Χ	Σεισμικές Δυνάμεις Ζ	Απόκλιση κέντρων Ρο	Απόκλιση Ρο - ΚΜ
			Σενάρια		Αποτελ	έσματα					Εμα	ράνιση				

The 8th Module is called "ANALYSIS" and includes the following 3 groups of commands:

- √ Script
- √ Results
- √ Show

After the completion of the modeling of the structure, the creation of the mathematical model, insertion of the plates and assignment of all loads to the corresponding members, the analysis of the design based on the regulation you will define, the creation of the combinations of forces and the checking of the results that will be obtained.

Scenarios

The commands of the "Scenarios" group allow the creation of the analysis scenarios (selection of regulation and analysis type) and their execution.

_0			-0
E.	EC8_General Static (0)	*	G
Νέο	' Ενεργό Σενάριο		Εκτέλεσε
	Σενάρια		

1.1 New

Command to create the analysis scenarios.

IMPORTANT OBSERVATIO	DN:		
Scenario		\times	
Enavapiθμηση Κόμβων Cuthill-McKee(II)	✓ Advanced Multi-Threaded Solv Ονομα		The program has now incorporated new rapid analysis algorithms, using more sources, such as the card graphics, resulting in faster implementation (Parallel Processing). The activation is done through the creation of scripts.

A prerequisite to run this analysis is to go to the local disk where you have installed the program, to the folder SCADAX->vcrest and

run the 2 applications with the msi extension.

In the new versions of SCADA Pro has been fully integrated a new fast multithreaded solver (multithreaded solver) which takes full advantage of the multiple cores of the latest technology processors and the full size of the RAM of 64bit systems. This solver in combination with the most modern algorithms of register configuration, solving systems of equations and storing large amounts of data, belongs to the most modern methods of High Performance Computing, which are applied by the most reliable software all over the world and enables the solution of very large size operators.

In the dialog box that accompanies the selection of the New command, you can create several analysis scenarios, in addition to the 2 predefined ones*

Ανάλυση	Seismic 🗸	Ανάλυση	EC8_General	~			
Τύπος	Static Dynamic	Τύπος	Static	~			
Ιδιότητες	Seismic	-Ιδιότητες-	Static		Ανάλυση	Seismic	~
Μέλι Φορτία Νέο	EC-8_Greek NTC_2008 EC8_Italia EC8_Cyprus EC8_Austrian EC8_General SBC Saudi	Μέλι Φορτία Νέο	Ογπατική Ανελαστική Static Ελαστική Dynamic Προέλεγχος Static Προέλεγχος Dynamic Time History Linear Time History Non Linear		Τύπος Ιδιότητες Μέλι Φοοτία	E.A.K. (Static) E.A.K. (Static) E.A.K. (Dynamic-eτi) E.A.K. (Dynamic) Παλαιός 1959-84 Παλαιός 1984-93	~

Select from the "Analysis" list and the corresponding "Type" list and click on to create a new script.

ATTENTION:

• The materials must be in accordance with the selected regulation, and when data input, all cross-sections must have the correct grades (C for the newer regulations, B for the old ones)

* Predefined scripts are created according to the Rules and Attachment option you make at the beginning, within the General Parameters window that opens automatically immediately after you define the file name.

1							
Γενικές Παράμετροι					\times		
Αλλες Παράμετροι Γενικά Στοιχεία	Οθόνη Εργου	Σχέδιο Υλικ	ά - Κανον	Απεικόνιση Λισμός			
Κανονισμός ΕC				~	1		
Προσάρτημο General				~			
Βιβλιοθήκη Σιδηρών Δια	τομών Eur	~ o	Metric	~			
Σκυρόδεμα Θεμελίωση C20/25	~	Μεταλλικά Μελη - Στοιχεία Μοταλλικά Πλάκ	Ιεταλλικά ελη - Στοιχεία S275(Fe				
Ανωδομή C20/25	~	Μεταλλική Ι Ιλακά \$275(Fe430 Κοχλίες 4.8 Συγκόλληση \$275(Fe430					
Χάλυβας Κύριος S400s	~						
Συνδετήρες S400s	~	Εύλινα	C14	~			
Συντελεστές Ασφάλει Αστοχίας Λειτουργι γε 1.5 1 γε 1.15 1	ας γΜ κ. 1 γΜ 1	0 YM1 1 14 YM5 1	γM2 1.25 γM7 1.1	γM3] [1.25			
ОК	Can	icel Ap	oply	Help			

Γενικές Παράμε	τροι	N
Αλλες Παρά Γενικά	ιμετροι Οθ Στοιχεία Εργου	θόνη Σχέδιο Απεικόνιση Υλικά - Κανονισμός
Κανονισμός	Greek	~
Προσάρτημα	1959-1984	~
Βιβλιοθήκη Σιδ	ίηρών Διατομών	Euro 🗸 Metric 🗸
-Σκυρόδεμα -		Μεταλλικά
Θεμελίωση	B160 ~	Μελη - Στοιχεία S275(Fe430) 🗸
Ανωδομή	B160 ~	Μεταλλική Πλάκα S275(Fe430, ∨
- Χάλυβας Κύριος	STIII ~	Κοχλίες 4.8 ~ Συγκόλληση S275(Fe430; ~
Συνδετήρες	STI ~	Ξύλινα C14 ~
Συντελεστές Αστοχίας γc 1.5 γs 1.15	ς Ασφάλειας Λειτουργικ. [1[[1]	YM0 YM1 YM2 YM3 1 1 1.25 1.25 YM4 YM5 YM7 1 1 1.1
[ОК	Cancel Apply Help

OBSERVATION:

Materials are automatically adjusted according to the selected regulation, so that when entering data, all sections are given the correct grades and reinforced with the corresponding steel.

SCADA Pro allows you to choose between the following analysis scenarios:

For Greece: ELASTIC - UNELASTIC

- static	Without the involvement of seismic actions
- dynamic	Dynamic spectral analysis
- EAK Dynamic-eti	Dynamic spectral analysis with homologues torsional pairs
- EAK Dynamic	Dynamic spectral analysis with displacement of the masses
- Old 1959-84	Seismic analysis based on the regulation of 1959
- Old 1984-93	Seismic analysis based on the regulation of 1984
- EC 8 Greek static	Structural analysis based on Eurocode 8 and the Greek Appendix
- EC8 Greek dynamic	Dynamic analysis based on the Eurocode 8 and the Greek Appendix
- EC 8 English Pre-test Static	Pre-testing based on the CAN.EPE
- EC8 Greek Pre-Control Dynamic	Pre-testing based on the CAN.EPE
- EC 8 Greek Time History Linear	Static analysis based on Erocode 8
- EC 8 Greek Time History Non Linear	Dynamic analysis based on the Eurocode 8

- EC 8 English Elasticity	Anelastic seismic analysis based on the
	8 or the EDPC.

For overseas:

ELASTIC - UNELASTIC

- DC 2008 & 2018	Seismic analysis based on the Italian regulation of 2008					
- EC8 Italy	Seismic analysis based on the seismic code 8 and the Italian appendix					
- EC8 Cyprus	Seismic analysis based on the seismic code 8 and the Cyprus Appendix					
- EC8 Austrian	Seismic analysis based on Eurocode 8 and the Austrian Appendix					
- EC8 General	Seismic analysis based on Eurocode 8 without appendices (with typing capability prices and rates)					
- EC 8 General Resilient	Anelastic seismic analysis with based on the					
- SBC 301	Seismic analysis based on the Saudi Code Arabic (SBC 301)					

• **PROPERTIES**

The "Properties" field includes the buttons Members, Nodes, Formats where you set the relevant coefficients.

Ιδιότητες	
Μέλη	Κόμβοι
Φορτίσεις	Μάζες

Both the default and the new scenarios have these coefficients filled in by default and the user can modify them at will.

Μέλη

Πολλαπλασιαστές Τιμών Ιδιοτήτων									×	
EC-8_Greek Static										\sim
Πολλαπλασιαστές Τιμ	ών Ιδιοτή	των Γραμ	μικών Μ	ελών —						
Σκυρόδεμα 📉	E	G	Ak	Asy	Asz	ε	Ix	Iy	Iz	
Σκυρόδεμα Χάλυβας-Τυπικές	1	1	1	1	1	1	0.1	0.5	0.5	
Χάλυβας-Συγκ/τές Ξύλινες Τυπικές	1	1	1	1	1	1	0.1	0.5	0.5	
Ξύλινες Χρήστη Τοιχοποιία	1	1	1	1	1	1	0.1	0.5	0.5	
Ψυχρής Έλασης Μ.Ι.Π. Τοιχοποιία	1	1	1	1	1	1	0.1	0.5	0.5	
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	0.1	0.5	0.5	
TOIXEIA - B3D	1	1	1	1	1	1	0.1	0.5	0.5	
TOIXEIA - TRUSS	1	1	1	1	1	1	0.1	0.5	0.5	
Torχεία (Lmax/Lmin) > 4 OK Cancel										

Where you can enter the values of the multipliers for inertias of the linear structural elements to be considered in the analysis.

OBSERVATIONS:

A By default, all multipliers are automatically set to the value specified in the corresponding regulation.

	~
1.0	
E.A.K.	
EC	

Especially for a <u>static inelastic analysis</u> scenario, whether it is Eurocode 8 or CANPE (EC-8_Greek / Inelastic), the multipliers of the inertial quantities defined here will be taken into account in the first Pushover analysis concerning the permanent and mobile loads with default values those provided by EC8. Then, in the parameters of the inelastic analysis, you have the possibility to specify whether these values will be maintained in units, at all stages of the process, or whether they will be reduced at each step starting of course from the whole initial values. The impairment can be done either from the beginning at each step, or after the plastic joint has been created.

Also, here you can set the aspect ratio for the vertical elements in order for them to be marked as "Valley".

rde			
	Τοιχεία (Lmax/Lmin) >	4	

Select Evημέρωση to update the script and register the changes.

Κόμβοι		
Κόμβοι		×
EC-8_Greek Sta	atic	
Κύριοι Κόμβοι	Nai	\sim
Ελατήρια		
Dx	Dy	Dz
Nai 🗸 🗸	Nai 🗸 🗸	Nai 🗸 🗸
Rx	Ry	Rz
Nai 🗸 🗸	Nai 🗸 🗸	Nai 🗸 🗸
ОК	(Cancel

where you choose to take into account the diaphragmatic function of the plates (F.S.R.) ("Yes" default) or not ("No")

In addition, in a similar way, you choose whether or not to allow the relative movements for the foundation springs, i.e. whether you want the building to be released in a flattened state ("No") or whether you want to take into account the influence of the foundation you have introduced.

OBSERVATION:

▲ In cases where a <u>Dynamic analysis</u> is required, if for the corresponding scenario dynamics select "Nodes" and "open" the springs ("Yes"), then you will be able to consider the combinations of dynamics and sizing of the foundation.

Select Evημέρωση to update the script and register the changes.

Φορτίσας								
Συμμετοχή Φοι	ρτίσεων							×
EC8_Cyprus Dy Φορτίσεις Σεναρίου	ynamic g(m/sec2) 9.81 Διαθέ	έσιμες Φ	ορτίσει	ς και Ομι	άδες φο	ρτίων		
G(1) +	Φόρτιση	LG1	LG2	LG3	LG4	LG5	LG6	L ^
Q(2) +	1. Μόνιμα Φορτία	1.00						
	2. Κινητά Φορτία	0.00						
	3. Аvєµоς 0 Сре_р+Срі	0.00						
	4. Ανεμος 0 Cpe_p-Cpi	0.00						
	5. Ανεμος 0 Cpe_n+Cpi	0.00						
	6. Ανεμος 0 Cpe_n-Cpi	0.00						
	7. Аvєµоς 90 Сре_р+Срі	0.00						
	8. Аvєµоς 90 Сре_р-Срі	0.00						
	9. Аvєµоς 90 Сре_n+Срі	0.00						
	10. Ανεμος 90 Cpe_n-Cpi	0.00						~
	<							>
	ОК			Cance	el			

where, for each scenario load, you define the corresponding load (LC) including its groups (see "Loads">>"Load groups") with the corresponding multipliers.

For the scenarios involving the earthquake,

1. first select the category "Permanent Loads" - G(1), coloured blue, and set for LC1 a value of 1.00 in all subgroups and

2. then select the category "Permanent Loads" - Q(2), coloured blue, and set LC2 to 1.00 in all subgroups.

3. The "+" next to the charging category Q(2) + Q

In scenarios where the earthquake is not involved (simple static, e.g. presence of wind), the loads are shown as numbers and in each load you define, with a factor of 1, the presence of the corresponding load.

ATTENTION:

Each scenario can include up to 4 loadings.

Συμμετοχή Φορ	τίσεων							×												
Static Ανεμος (Φορτίσεις Σεναρίου) g(m/sec2) 9.81 Δια	θέσιμες Φ	opher	ς και Ομι	άδες φο	ρτίων														
1+	Φόρτιση	LG1	LG2	LG3	LG4	LG5	LG6	Ŀ ^												
3+	1. Μόνιμα Φορτία	0.00																		
4 +	2. Κινητά Φορτία	0.00																		
	3. Ауєµоς 0 Сре_р+Срі	3. Ауєμоς 0 Сре_р+Срі	3. Ауєµоς 0 Сре_р+Срі	3. Ауєµоς 0 Сре_р+Срі	 Аνєμος 0 Сре_р+Срі 	 Аνεμος 0 Сре_р+Срі 	 Аνεμος 0 Сре_р+Срі 	3. Ауєµоς 0 Сре_р+Срі	 Ανεμος 0 Cpe_p+Cpi 	 Аνєμος 0 Сре_р+Срі 	 Аνєμος 0 Сре_р+Срі 	 Аνєμος 0 Сре_р+Срі 	1.00							
	 Ανεμος 0 Cpe_p-Cpi 	0.00																		
	5. Аvєµоς 0 Сре_n+Срі	0.00																		
	6. Аνεμος 0 Cpe_n-Cpi	0.00																		
	7. Ανεμος 90 Cpe_p+Cpi	0.00																		
	8. Аvєµоς 90 Сре_р-Срі	0.00																		
	9. Аνεμος 90 Cpe_n+Cpi	0.00																		
	10. Аνєμоς 90 Сре_n-Срі	0.00						\checkmark												
	<							>												
	0	К		Cance	el															

EXAMPLE:

For example in the first load of the Static scenario is the load set as LC3

Συμμετοχή Φο	ορτίσεων		
Static Ανεμος Φορτισεις Σεναρίου	0 g(m/sec2) 9.81 Δια	αθέσιμες Φ	ορτίσεις
1+	Φόρτιση	LG1	LG2
3+	 Аνεμος 0 Сре_р+Срі 	1.00	
4 +	 Ανεμος 0 Cpe_p-Cpi 	0.00	
	5. Аνεμος 0 Cpe_n+Cpi	0.00	
	6. Aveµoc 0 Cpe n-Cpi	0.00	

Ορισμό	ς Φόρτισ	ης		×
🗌 Ιδιο	ν Βάρος	Ανεμος 0 Cpe_p+Cpi	~	Εισαγωγή
LC	I.B.	Περιγραφή	^	Διαγραφή
1	Nai	Μόνιμα Φορτία		
2	OXI	Κινητά Φορτία		Διαγραφή
3	OXI	Ανεμος Ο Cpe_p+Cpi		Φορτίων
4	Охі	Ανεμος Ο Cpe_p-Cpi		Argungent
5	OXI	Ανεμος 0 Cpe_n+Cpi		ολων των
6	OXI	Ανεμος 0 Cpe_n-Cpi		Φορτίων
7	OXI	Avεμος 90 Cpe p+Cpi	×	
<			>	OK

A scenario that has already been created can:

to be modified: first select it from the list, then change the Name, Analysis or even the Type and select "Update".

to be cancelled: first you select it from the

list, and then activate Cancel and select "Update". A * appears in front of the script. You can also reset it in the same way. (select > uncheck > "Update")

Επαναρίθμηση

The field "Renumber Nodes" field contains a list of options: The choice affects the resolution time.

The default is the option, recounting with "Cuthill-Mckee(II)". You can correspondingly select "SCADA".

The "Cuthill-Mckee" and "Ascending Series" recounts give slower

analyses, while the "No" option is not recommended.

Select the command Eleosoc to save the scripts and proceed with the analysis.

Εκτέλεση ολων των αναλύσεων

1 The new **Run All Analyses** command allows you to run all scripts in the list with one click.

Επαναρίθμ	ιηση	
Κόμβων	Cuthill-McKee(II) \sim	
1	Οχι Αύξουσα Σειρά Cuthill-McKee Cuthill-McKee(II) Scada	

1.2 Active Script

From the list of scenarios, you select the Active Scenario, i.e. the one that will be used for the analysis of the study.

In the list of scenarios, in addition to the two predefined ones, you can now find all the other scenarios you have created previously. Select one scenario at a time and continue by setting the parameters of the corresponding analysis.

1.3 Run

It gives access to the process of performing the analysis. Depending on the "Active Scenario", the corresponding dialogue box opens, which differs for:

- 1. the scenarios of the NAC (figure a)
- 2. the scenarios of the Eurocodicides (picture b)
- 3. the Resilient scenarios (figure c) and
- 4. the **Time History** scenarios (figure d)

Διαδικα	ισία Απλοποιημένης Φασμ	ατικής Μεθόδου	(E.A.K.)			×	
	Παράμετροι	Κέντρα Μάζας (cm)					
	Αυτόματη Διαδικασία	Level X Y Z				^	
Διαδικα	ισία	0 - 0.00	0.00	0.00	0.00		
	Μάζες	1 - 300.00	0.00	300.00	0.00		
	Σημείο Ρο						
	Επίπεδα Κάμψης					- 11	
	T>1						
	Εκκεντρότητες					~	
	Ενημέρωση Δεδομένων		E	ξοδος			image a
Υπολογ	νισμός Σεισμικών Δράα	σεων - Ανάλυσ	n - Ελεγχ	rol		×	
				•			
	Παράμετροι	Κέντρα Μάζας	; (cm)			\sim	
	Αυτόματη Διαδικασία	Level	Х	Y	Z	^	
Διαδικ	ασια Μάζες-Ακαμψίες	0 - 0.00	0.00	0.00	0.00		
	Κανονικότητα	1 - 300.00	0.00	300.00	0.00		
	Κανονικό						
	🗸 Σε κάτοψη						
	🖌 Καθ΄υψος						
[Ισοδύναμη						
	Ανάλυση					~	
	Ενημέρωση Δεδομένων		E	ξοδος			image b

Εκτέλι	εση Pushover Ανάλυσης					\times	
	Παράμετροι	Κέντρα Μάζας	(cm)			\sim	
	Αυτόματη Διαδικασία	Level	х	Y	Z	^	
-Διαδι	κασία	0 - 0.00	0.00	0.00	0.00		
	Μάζες-Ακαμψίες	1 - 300.00	0.00	300.00	0.00		
	Στατική-Δυναμική	1 500.00	0.00	500.00	0.00		
	Pushover						
						_	
						0	
		1		_			
			-				
	Ενημέρωση Δεδομένων		Εξ	;000ς			picture c
Γραμμ	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ	στορίες (Linea	EE ar)	;000ς		×	picture c
Γραμι	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι	στορίες (Linea	ar)	;oooc		×	picture c
Γραμμ	Ενημέρωση Δεδομένων ιική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία	στορίες (Linea Κέντρα Μάζας	et	;οόος		×	picture c
Γραμμ	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία	στορίες (Linea Κέντρα Μάζας Level	ar) (cm)	γ	Z	×	picture c
Γραμμ	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00	Ir) (cm) X 0.00	y γ γ 0.00	Z 0.00	×	picture c
Γραμμ	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Time History	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00 1 - 300.00	Ir) (cm) X 0.00 0.00	y γ 0.00 300.00	Z 0.00 0.00	×	picture c
Γραμμ -Διαδι	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊί Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Τίme History δημιουργηθεί και αναλυτικό γεία αραστέασμάτων για	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00 1 - 300.00	Ir) (cm) X 0.00 0.00	yoooς Y 0.00 300.00	Z 0.00 0.00	×	picture c
Γραμμ - Διαδιι αρ 	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊί Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Τίme History δημιουργηθεί και αναλυτικό χείο αποτελεσμάτων για θε χρονικό βήμα	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00 1 - 300.00	(cm) xr) X 0.00 0.00	yγ 0.00 300.00 300.00	Z 0.00 0.00	×	picture c
Γραμμ -Διαδιι αρ κάι	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Time History δημιουργηθεί και αναλυτικό χείο αποτελεσμάτων για δε χρονικό βήμα Αρχείο Αποτελεσμάτων	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00 1 - 300.00	(cm) X 0.00 0.00	x000ς Υ 0.00 300.00 0.00 300.00	Z 0.00 0.00	×	picture c
Γραμμ - Διαδιί αρ κά	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Τίme History δημιουργηθεί και αναλυτικό χείο αποτελεσμάτων για θε χρονικό βήμα Αρχείο Αποτελεσμάτων	στορίες (Linea Κέντρα Μάζας Ο - 0.00 1 - 300.00	(cm) X 0.00 0.00	2000ς V 0.00 300.00 4 4 4 4 4 4 4 4 4 4 4 4 4	Z 0.00 0.00		picture c
Γραμμ - Διαδιι αρ κάι	Ενημέρωση Δεδομένων μική Δυναμική με Χρονοϊ Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Τime History δημιουργηθεί και αναλυτικό χείο αποτελεσμάτων για Βε χρονικό βήμα	στορίες (Linea Κέντρα Μάζας Level 0 - 0.00 1 - 300.00	(cm) X 0.00 0.00 0.00	γ 0.00 300.00 300.00	Z 0.00 0.00	× *	picture c
Γραμμ	Ενημέρωση Δεδομένων ιική Δυναμική με Χρονοϊί Παράμετροι Αυτόματη Διαδικασία κασία Μάζες-Ακαμψίες Τίme History δημιουργηθεί και αναλυτικό χείο αποτελεσμάτων Αρχείο Αποτελεσμάτων	στορίες (Linea Κέντρα Μάζας Ο - 0.00 1 - 300.00	кг) (ст) 2.000 0.00 0.00 0.00	yγ 0.00 300.00	Z 0.00 0.00	× •	picture c

First of all, you choose Ενημέρωση Δεδομένων to update the registry and then select to set the parameters of the specific study.

OBSERVATION:

After t	he E	/ημέρωση	Δε	δομένων	Data Upd	ate, t	he parameters you set previously are retained.
Howe	/er, yo	ou shou	ld	define t	he XZ Leve	els of	application of the Seismic Action each time
Επίπεδο	ο XZ εφ	αρμογής	της	σεισμικής	; δύναμης		
Κάτω	0 - 0.0	0	\sim	Ανω	5 - 1500.00	\sim	

Depending on the scenario you choose, the configuration dialog box varies, and so:

1.Σ1 STATIC scenario

Select Static Analysis and Static Type and press the New button.

Scenario			×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Thread	led Solver
🗌 Ακύρωση	Ονομα		
Static (0)	Ανάλυση	Static	~
	Τύπος Ιδιότητες	Static	~
	Μέλι	1	Κόμβοι
	Φορτία	εις	Μάζες
	Nέo	i	Ενημέρωση
	Εκτέλεσ	η ολων των	αναλύσεων
		Εξοδος	

In Members the Multipliers are automatically updated and filled with units.

										_
Πολλαπλασιαστές Τιμών Ιδιοτήτων Χ									×	
Static	Static									
Πολλαπλασιαστές Τιμα	ών Ιδιοτή	πων Γρα	μμικών Μ	Ιελών —	N					
Σκυρόδεμα 🗸 🗸	Е	G	Ak	Asy	Asz	ε	Ix	Iy	Iz	
ΔOKOI - B3D	1	1	1	1	1	1	1	1	1	
AOKOI - TRUSS	1	1	1	1	1	1	1	1	1	
ΔOKOI - B3Def	1	1	1	1	1	1	1	1	1	
ΣΤΥΛΟΙ - Β3D	1	1	1	1	1	1	1	1	1	
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	1	1	1	
TOIXEIA - B3D	1	1	1	1	1	1	1	1	1	
TOIXEIA - TRUSS	1	1	1	1	1	1	1	1	1	
Τοιχεία (Lmax/Lmin) >	4	ł			C	Ж	(Cancel		

In Charges, for charge 1, set the unit to LC1 (permanent) and for charge 2, set the unit to LC2 (mobile) and press the Update button.

Συμμετοχή Φ	ορτί	σεων		~								×
Static Φορτίσεις Σεναρίου	g	(m/sec2)	9.81	6	Διαθέ	σιμες Φ	ορτίσεια	ς και Ομα	άδες φο	ρτίων		
1+ 2+ 3 4 5 6 7 8 9 10 11 12 13 14 15 16	<	LC LC1 LC2	LG1 1.00 0.00	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	LG10
					OK			Cance	el			

With the Static script active

The Run command opens the window for running the script:

Static - Dynamic An	alysis (C:\MELETES\DEKPOL\3\scaanal\Scen000\1000S	×
Stiffness Matrix	BANDWIDTH	
Elapsed Time		
Reading Input Data		
Creating Block		
Decomposing Block		
Vector Assembly		
Writting Output		
Εκτέλεση	Stop	

The analysis is run by pressing the Run button and once completed press Exit.

1.Σ2 POWER scenario

Select Dynamic Analysis and Response spectrum type and press the New button.

Scenario		×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Ndvanced Multi-Threaded Solver
Ακύρωση	Ονομα	
Dynamic (0)	Ανάλυση	Dynamic 🗸 🗸
	Τύπος Ιδιότητες	Response spectrum $\ \lor$
	Μέλι	Κόμβοι
	Φορτία	πεις Μάζες
	Nέo	Ενημέρωση
	Εκτέλεσ	η ολων των αναλύσεων
		Εξοδος

In Members the Multipliers are automatically updated and filled with units.

Πολλαπλασιαστές Τιμών Ιδιοτήτων Χ									
Static 🗸									
Πολλαπλασιαστές Τιμα	ών Ιδιοτή	των Γραμ	μικών Μ	ελών	N				
Σκυρόδεμα 🗸 🗸	Е	G	Ak	Asy	N Asz	3	Ix	Iy	Iz
ΔOKOI - B3D	1	1	1	1	1	1	1	1	1
∆OKOI - TRUSS	1	1	1	1	1	1	1	1	1
∆OKOI - B3Def	1	1	1	1	1	1	1	1	1
ΣΤΥΛΟΙ - Β3D	1	1	1	1	1	1	1	1	1
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	1	1	1
TOIXEIA - B3D	1	1	1	1	1	1	1	1	1
TOIXEIA - TRUSS	1	1	1	1	1	1	1	1	1
Toryzia (Lmax/Lmin) > 4 OK Cancel									

In Masses, you define the coefficients for calculating the masses from the available loadings (LC1(permanent), LC2(mobile)).

Υπολογι	σμός Μα	ζών								×
Dynamic	ς Υπολογ	γισμός Μ	Ιαζών αι	τό Διαθέ	σιμες Φ	ορτίσει	с кан Ср	άδες φο	ρτίων	
LC	LG1	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	LG10
LC1	1.00									
LC2	1.00									
g(m/se	c2) 9.8	1					ОК		Ca	ncel

With the Dynamic scenario active

The Run command opens the window for running the script and by pressing Update Data, the commands are activated:

Dynar	nic					×
	Παράμετροι	Κέντρα Μάζας ((cm)			~
	Αυτόματη Διαδικασία	Level	Х	γ	Z	^
-Διαδι	κασία	0 - 0.00	0.00	0.00	0.00	
	Μάζες-Ακαμψίες	1 - 350.00	0.00	350.00	0.00	
		2 - 700.00	0.00	700.00	0.00	
		3 - 1050.00	0.00	1050.00	0.00	
	Ανάλυση					~
	Ενημέρωση Δεδομένων	,	Εξ	οδος		

Select the Parameters command and set:

Set the Coefficient of Involvement of the seismic force per direction

CQC	
CQC (10%)	
SRSS	

Select the mode of overlapping of eigenmodal responses either according to the Full Quadratic Parallelism CQC and CQC(10%) rule (3.6 EAK), or the Simple Quadratic Parallelism SRSS rule.

Ιδιοτιμές	Ακρίβεια
10	0.001
ζ(%) 5	

Define the number of Idiosyncrasies, the Accuracy and the depreciation rate g.

Press the Response Spectrum button to view the spectrum as it is configured or to modify it by changing the values in the table:

The Write TXT and Read TXT commands allow you register and open respectively a .txt file containing the response spectrum values.

You can set displacement range

Τύπος Φάσματος

Displacement

and select a .txt displacement file to create the Displacement Response Spectrum.

With the Automatic Process running the analysis

 \sim

1.Σ3 Scenarios E.A.K.

1.Σ3.1 Seismic analysis and E.A.K. (Static) type analysis

Select Seismic Analysis and E.A.K. (Static) type and press the New button.

ATTENTION:

The materials must be in accordance with the selected regulation, and when entering the data, all cross-sections must have the correct grades (C for the NAC scenarios)

Scenario		×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Threaded Solver
🗌 Ακύρωση	Ονομα	
Seismic E.A.K. (Static) (0)	Ανάλυση	Seismic 🗸
	Τύπος	E.A.K. (Static) V
	Ιδιότητες	
	Μέλι	η Κόμβοι
	Φορτία	σεις Μάζες
	Νέο	Ενημέρωση
	Εκτέλεσ	η ολων των αναλύσεων
		Εξοδος

In Members the Multipliers are automatically updated and filled in with the corresponding coefficients

Πολλαπλασιαστές Τιμ	ιών Ιδιο	τήτων							Х
Seismic E.A.K. (Static)									
Πολλαπλασιαστές Τιμα	ών Ιδιοτή	των Γραμ	μικών Μ	ελών —					
Σκυρόδεμα 🛛 🗸	E	G	Ak	Asy	Asz	3	Ix	Iy	Iz
ΔOKOI - B3D	1	1	1	1	1	1	0.1	1	0.5
AOKOI - TRUSS	1	1	1	1	1	1	0.1	1	0.5
∆OKOI - B3Def	1	1	1	1	1	1	0.1	1	0.5
ΣΤΥΛΟΙ - B3D	1	1	1	1	1	1	0.1	1	1
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	0.1	1	1
TOIXEIA - B3D	1	1	1	1	1	1	0.1	0.666	0.666
TOIXEIA - TRUSS	1	1	1	1	1	1	0.1	0.666	0.666
Toixeia (Lmax/Lmin) > 4 OK Cancel									

In the Loadings, for G, set the unit to LC1 (permanent) and for Q, set the unit to LC2 (mobile) and press the Update button.

Συμμετοχή Φορ	πίσεων						Ν				×
Seismic E.A.K.	(Static)						13				
Φορτίσεις Σεναρίου	g(m/sec2)	9.81		Διαθέ	σιμες Φ	ορτίσει	ς και Ομ	άδες φο	ρτίων		
G(1) +	LC	LG1	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	LG10
G(2) *	LC1	1.00									
	LC2	0.00									
											_
	<										>
			- [OK			Canc	el			

With the Seismic EAK (Static) scenario active and therefore the simplified spectral method,

7	Seismic E.A.K. (Static) (0)	- 7.
Νέο	Ένεργό Σενάριο	Εκτέλεσε
	Σενάρια	

The Run command opens the window for running the script and by pressing Update Data, the commands are activated:

Διαδικο	ασία Απλοποιημένης Φασμ	ματικής Μεθόδι	ου (E.A.K	.)		\times
	Παράμετροι	ίς Κέντρα Μάζαα	ς (cm)			~
	Αυτόματη Διαδικασία	Level	Х	Y	Z	^
Διαδικ	ασία	0 - 0.00	0.00	0.00	0.00	
	Μάζες	1 - 350.00	0.00	350.00	0.00	
	Σριμείο Ρο	2 - 700.00	0.00	700.00	0.00	
	2ημείο Fo	3 - 1050.00	0.00	1050.00	0.00	
	Επίπεδα Κάμψης					
	T > 1					_
	Εκκεντρότητες					~
	Ενημέρωση Δεδομένων		Eξ	οδος		

To set the parameters, the dialog box will have the following format:

Παράμετροι Απλοποιημένης Φασματικής Μεθόδου							
Σεισμική Περιοχή Χαρακτηριστικές Περίοδοι Σπουδαιότητα Σεισμικές Περίοχος Τ1 0.1 Ζώνη Σ2 ~							
Zώνη I ~ a 0.16 A ~ T2 0.4 Vi 1							
Συντελεστές Επίπεδα XZ θ 1 βο 2.5 qx 3.5 ζ(%) 5 n 1 qz 3.5							
Εκκεντρότητες Τσοδύναμες Στατικές Τυχηματικές Ισοδύναμες Στατικές e τιχ 0.05 *Lx e fxi 1.5 *eoxi e rxi 0.5 *eoxi e τιχ 0.05 *Lx e fzi 1.5 *eozi e rzi 0.5 *eozi							
Rd (T) Rd (TX) 0 Rd (TY) 0 Rd (TZ) 0							
Γωνία Κυρίων Επιπέδων Κάμψης Γωνία α 🔲 0 (+) Αριστερόστροφα () Δεξιόστροφα							
Default Λεπτομέρειες ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ ΟΚ Cancel							

Where you enter the necessary information about the seismic area, the ground and building, as well as the earthquake coefficients and application levels.

Loophal	i opio Xi			
	Σεισ	τμικέα	; Περ	ιοχές
Ζώνη	I	\sim	а	0.16

Select the seismic zone, after first updating the .txt file that opens by clicking on "Seismic Areas" for the number of the zone corresponding to the municipality where your study belongs. Select the number from the "Zone" list and the "a" factor is automatically filled in.

Χαρακτηριστικές Περίοδοι					
Εδαφος		T1	0.1		
A	\sim	T2	0.4		

Select the "soil category" from the list and the fields of the period characteristics "T1" and "T2" are automatically updated,

📋 eak2003.txt - WordPad		
File Edit View Insert Format Help		
NOMOE A0HNQN		
ΔHMOI	ZΩNH	
Δ. ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ	I	α=0.16
Δ. ΑΓΙΑΣ ΠΑΡΑΣΚΕΥΗΣ	I	α=0.16
Δ. ΑΓΙΟΥ ΔΗΜΗΤΡΙΟΥ	I	α=0.16
A. A0HNAIQN	I	α=0.16
Δ. ΑΙΓΑΛΕΩ	I	α=0.16
A. AAIMOY	I	α=0.16
Δ. ΑΜΑΡΟΥΣΙΟΥ	I	α=0.16
Δ. ΑΡΓΥΡΟΥΠΟΛΕΩΣ	I	α=0.16
Δ. ΒΡΙΛΗΣΣΙΩΝ	I	α=0.16
Δ. ΒΥΡΩΝΟΣ	I	α=0.16
Δ. ΓΑΛΑΤΣΙΟΥ	I	α=0.16
Δ. ΓΛΥΦΑΔΑΣ	I	α=0.16
Δ. ΔΑΦΝΗΣ	I	α=0.16
A. EAAHNIKOY	I	α=0.16
Δ. ΖΩΓΡΑΦΟΥ	I	α=0.16
Δ. ΗΛΙΟΥΠΟΛΕΩΣ	I	α=0.16
A. HPAKAEIOY	I	α=0.16
Δ. ΚΑΙΣΑΡΙΑΝΗΣ	I	α=0.16
Δ. ΚΑΛΛΙΘΕΑΣ	I	α=0.16
Δ. ΚΗΦΙΣΙΑΣ	I	α=0.16
Δ. ΜΕΛΙΣΣΙΩΝ	I	α=0.16
Δ. ΜΟΣΧΑΤΟΥ	I	α=0.16
Δ. ΝΕΑΣ ΕΡΥΘΡΑΙΑΣ	I	α=0.16
Δ. ΝΕΑΣ ΙΩΝΙΑΣ	I	α=0.16
Δ. ΝΕΑΣ ΣΜΥΡΝΗΣ	I	α=0.16
Δ. ΝΕΑΣ ΧΑΛΚΗΔΟΝΟΣ	I	α=0.16
A. NEOY WYXIKOY	I	α=0.16
Δ. ΠΑΛΑΙΟΥ ΦΑΛΗΡΟΥ	I	α=0.16
Δ. ΠΑΠΑΓΟΥ	I	α=0.16
Δ. ΠΕΡΙΣΤΕΡΙΟΥ	I	α=0.16
Δ. ΠΕΥΚΗΣ	I	α=0.16

Σπουδαιότητα	and "importance category" to automatically fill in importance factor "y".
Ζώνη Σ2 🗸	
γi 1	
Συντελεστές	
θ 1 βο	2.5 qx 3.5
ζ(%) 5 n	1 qz 3.5

In the "Coefficients" field you can modify the default values related to the seismic spectrum by typing in the corresponding fields. The seismic coefficients "qx" and "qz" are filled in by the designer after taking into account all the necessary requirements of the NAC.

Επίπεδα	XZ			
Κάτω	0 - 0.00	~	Υψόμετρο στο 0.8*Ή	
Ανω	0 - 0.00	\sim	0 - 0.00	\sim

In the field "Levels HZ" you select the lower and the upper level for application of seismic actions (for buildings with basement and/or staircase termination, etc.).

For the fictitious elastic axis and the altitude at 0.8*H, the option is not necessary. The program automatically finds the closest to the building's z0=0,8*H diaphragm level.

To modify the coefficients for the eccentricities, select the corresponding checkbox and enter the new value on the right.

Εκκεντρότητες Τυχηματικές			Ισοί	δύναμεα	; Στατικ	ές			
е тіх 🗌	0.05	*Lx	e fx	i 🗌	1.5	*eoxi	e rxi	0.5	*eoxi
е тіз 🗌	0.05	*Lz	e fz	i 🗌	1.5	*eozi	e rzi	0.5	*eozi

In the same way, the designer can modify the spectra by X, Y and Z by entering his own values in the corresponding fields.

Rd (TX) 🗌 0 F	۲۲) 🔲 د (۲۲) bs	Rd (TZ) 🗌 0

Finally, the designer has the possibility to enter a value for the angle of the main bending planes, always by activating the corresponding checkbox first. The sign defines the direction of the angle.

- Γωνία Κυρίων Β	Επιπέδων Κάμψ	νης
Γωνία α	0	(+) Αριστερόστροφα () Δεξιόστροφα
OK	to save the	e parameters and close the dialog box.

The analysis shall be carried out either by selecting the automatic procedure via the command

Αυτόματη Διαδικασία, or the step-by-step procedure where the method is executed step by step with

in the following order:

Masses: Calculate the mass of each node of the analysed structure according to the equation G + ψ 2 x Q.

Point Po: Calculate the position of the trace of the plastic axis of the analysed structure at the level closest to 0.8 x H where H is its height.

Bending levels: The orientation of the main bending planes of the analysed beam is calculated.

T>1?: It is considered whether the eigenfrequency of the analysed beam exceeds unity in one or both of its main directions, in which case an additional horizontal force ΔH is calculated and added to its top level.

Eccentricities: Calculate the Random and Static Eccentricities of the subject analysis of the carrier, the corresponding torsional moments are generated and procedure of the Simplified Spectral Method is completed.

Observation:

Added analysis check messages to the new version to avoid possible errors. The messages contain instructions and guidelines for the correct completion of the analysis.

	1	
αναλυσή σεν ολο αρακαλώ ελέγξτε	κληρωσηκε. τα δεδομένα για πιθανά σφάλ	ματα.
Κωδικός Σφάλματι	oc 69	
Ο κόμβος 87 δεν	ισορροπεί. Έλεγξτε τους βαθμ	ούς
	This new anteresting at a tour	όμβο
ελευθερίας των μι	2/07/100/00/102/00/010/10	
ελευθερίας των μι		

1.Σ3.§ Criteria for exemption from the structural adequacy inspection of existing buildings (Government Gazette 350/17-2-2016)

SCADA Pro has incorporated the criteria for exemption from the structural adequacy inspection of existing buildings, according to Government Gazette 350/17-2-2016.

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

The exemption applies to additions, changes of use-conversions and their simultaneous combination. A prerequisite for the exemption is that the building must not "evidence of significant structural deficiency" which are:

Obvious damage to the load-bearing structure or obvious serious design weaknesses such as:

- 1. Large cracks >0,4~0,5 mm
- 2. Significant reduction of reinforcement due to corrosion
- 3. Short columns without clamping in critical positions
- 4. Significant reduction of wall infill on adjacent floors (e.g. pillar) or very asymmetrical arrangement of wall infill in combination with lack of vertical elements with significant stiffness (risk of formation of a loose floor).

In addition, in the case of an addition, a prerequisite is:

"The structural design of the existing building has been carried out with "full provision for the addition", i.e. all floors of the addition have been included in the structural simulation of the existing building"

The course of action followed in the programme for the above cases is as follows:

The entity is entered as existing and an analysis scenario is selected for its analysis according to its original design.

The possible scenarios in the program are in this case seismic (EAK and old) and EC8 Greek (Static or Dynamic).

Then, the addendum is inserted and a new analysis scenario is created (this study as opposed to the original one) which is necessarily an EAK (Static or dynamic-et) or Eurocode 8 (Static or Dynamic).

The following option has been added to these scripts in their configuration dialog box:

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

Selecting it displays the following

Κριτιρια Απαλλαγής Ελέγχου Στατικής Επάρκειας					
🗹 Κρπιρια Απαλλαγής	Ελέγχου Στατικής Επάρκειας ΦΕΚ. 350/17/2/20	16			
Είδος Επέμβασης	Προσθήκη 🗸 🗸				
Κατηγορία Κτιρίου	1 ~ ??				
Πρέπει για το τρέχ	ον σενάριο γi=1.0 και S=1.0 για εδάφη B,C				
Πρέπε	ι για το τρέχον σενάριο q = 2.3				
Δυσμενείς Συνέπειες	Δ1 ~ ??				
Στοιχεία Αρχικής Μελ	έτης				
Σενάριο Ανάλυσης	Seismic E.A.K. (Static) (0) V				
	Διάβασμα Στοιχείων απο Σενάριο				
Σπουδαιότητα	I ~ a 0 γi 0				
	x z				
Τἑμνουσα Βάσης (kN) 0 0				
Εδαφικη εππάχυνση	(m/sec2) 0 0				
O	Cancel				

The check means that the checks will be done and the results will be presented in the Seismic Action printout.

Then we choose the type of intervention

- 1. Add
- 2. Changes of Use Conversions
- 3. At the same time both

Next, the category of the existing building (original design) is selected according to the table Κατηγορίες Κτιρίων

Κατηγορία 1	Κτίρια που έχουν μελετηθεί με βάση τους Κανονισμούς της Ομάδας Α, έτσι όπως ισχύουν σήμερα				
Κατηγορία 2	Κτίρια που έχουν μελετηθεί με βάση ΝΕΑΚ/ΝΕΚΩΣ (1992), ΕΑΚ/ΕΚΩΣ (2000) ΕΝ1998-1, ΕΝ1992-1-1, ΕΝ1993-1-1, ΕΝ1994-1-1, ΕΝ1995, ΕΝ1996				
Κατηγορία 3	Κτίρια που έχουν μελετηθεί με τις "Πρόσθετες Διατάξεις του 1984", από Οπλισμένο Σκυρόδεμα και κατηγορίας σπουδαιότητας Ι ή ΙΙ.				
Κατηγορία 4	Οποιοδήποτε κτίριο				

This table is also displayed with ??

Under the building category, prompts are shown for parameter values of the current scenario (present study) according to the above GGC.

Πρέπει για το τρέχον σενάριο γi=1.0 και S=1.0 για εδάφη B,C Πρέπει για το τρέχον σενάριο q = 2.3

We then select the possible adverse effect in cases of change of use - conversion or a combination of both, according to the table below

Δυσμένεια Δ1	Αύξηση κατακόρυφων φορτίων					
Δυσμένειες Δ2	Αύξηση μαζών και επομένως σεισμικών φορτίων					
Δυσμένεια Δ3	Αλλαγή στατικού συστήματος που φέρει οριζόντια φορτία					
Δυσμένεια Δ4	Δυσμενέστερη σεισμική απόκριση λόγω επιδείνωσης της μη-κανονικότητας λόγω αλλαγής τοιχοπληρώσεων					
Δυσμένεια Δ5	Αύξηση του συντελεστή σπουδαιότητας					

ΠΙΘΑΝΕΣ ΔΥΣΜΕΝΕΙΣ ΣΥΝΕΠΕΙΕΣ

which is also displayed with ??

Next, we select the analysis scenario we ran in the first step for the initial study

Στοιχεία Αρχικής Μελέ	της
Σενάριο Ανάλυσης	Seismic E.A.K. (Static) (0) \checkmark
and press the	Διάβασμα Στοιχείων απο Σενάριο
In the section belo	ow, the values of the quantities required for the checks are shown.
Σπουδαιότητα	a 0.06 γi 1
	X Z
Τἑμνουσα Βάσης (kN)	69.220183 69.220183
Εδαφικη επιτάχυνση (m	/sec2) 0.5886 0.5886

Then, after setting the parameters as known, we run the scenario for this study.

The results of the criteria are displayed with the "Seismic Action" button

ΚΡΙΤΉΡΙΑ ΑΠΑΛΛΑΓΉΣ ΕΛΕΓΧΟΥ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΊΑΣ ΥΠΑΡΧΟΝΤΟΣ ΚΤΙΡΙΟΥ (ΦΕΚ 350/17-02-2016) Ξίδος Επέμβασης : Προσθήκη Κατηγορία Κτιρίου : 2

Κτίρια που έχουν μελετηθεί με βάση ΝΕΑΚ/ΝΕΚΩΣ (1992), ΕΑΚ/ΕΚΩΣ (2000), ΕΝ1998-1, ΕΝ1992-1-1, ΕΝ1993-1-1, ΕΝ1994-1-1, ΕΝ1995, ΕΝ1996

Στοιχεία Αρχικής Μελέτης : Seismic E.A.K. (Static) (0)

Σ3 1.15 0.16 1.1267 1.0621 129.98 122.53	1	Σπουδαιότητα	γi	α	αg,	,εx(m/sec2)	αg,	εz(m/sec2)	Ve,	ux	(kN)	Ve,	uz	(kN)	I
		Σ3	1.15	0.16	i	1.1267	i	1.0621	I	129	.98	I	122	.53	i

Στοιχεία Παρούσας Μελέτης : EC-8_Greek Statickyrio (7)

Σπουδαιότητα	Yi	α	ag, nx (m/sec2)) αg, nz (1	m/sec2)	Vn,ux	(kN) Vn,	uz (kN)	ļ
	11.00	0.36	2.0945	2.	0945	205	5.39	205.39	l

Διεύθυνση Χ

They appear in the order:

- The type of Intervention selected, the category of the building (if it is only Add, no adverse consequence option appears).

- The data of the analysis scenario of the original study are then displayed, such as its name and the corresponding values of the quantities required. This is followed by the corresponding data of the current study (without a value in the Importance field because the Importance of the original building is always taken).

- Finally, there follow the checks that relate to either intersection reasons, or to ground acceleration design reasons.

Checks are made in each direction and it goes without saying that the criteria for exemption must be met in both horizontal directions. The final criterion is expressed on a case-by-case basis as a final ratio which, if greater than one, is not exempt and, if less than or equal to one, is exempt.

1.Σ3.2 Seismic analysis and type E.A.K. (Dynamic-ET)

Select Seismic Analysis and E.A.K. type (Dynamic-ET) and press the New button.

ATTENTION:

▲ The materials must be in accordance with the selected regulation, and when entering the data, all cross-sections must have the correct grades (C for the NAC scenarios)

Scenario				Х
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	ہم Advanced Multi-Thre	d eaded Solver	
Ακύρωση	Ονομα			
Seismic E.A.K. (Dynamic-eti) (0)	Ανάλυση	Seismic		\sim
	Τύπος Ιδιότητες	Е. <mark>А.К. (</mark> [Dynamic-еті)	~
	Μέλι	ı	Κόμβοι	
	Φορτία	τεις	Μάζες	
	Nέo		Ενημέρωση	1
	Εκτέλεσ	η ολων τι	ων αναλύσεω	v
		Εξοδα	ος	

Having selected Seismic E.A.K. (Dynamic-ET) and therefore the simplified spectral method for setting the parameters, the dialog box will have the following format:

Παράμετροι Δυναμικής Φασματικζς	Μεθόδου 🗙
Σεισμική Περιοχή Σεισμικές Περιοχές	Χαρακτηριστικές Περίοδοι Σπουδαιότητα Εδαφος Τ1 0.1 Ζώνη Σ2 Υ
Zώνη Ι 🗸 a 0.16	Α · · Τ2 0.4 Υ ⁱ 1
Συντελεστές	Eninεδα XZ
θ 1 βο 2.5 qx 3.5	Κάτω 0-0.00 ∨ Ανω 3-1050.00 ∨
	Δυναμική Ανάλυση 🛛 CQC (10° 🗸
ζ(%) 5 n 1 qz 3.5	Ιδιοτιμές 10 Ακρίβεια 0.001
Rd (T) Rd (TX) 🔲 0 Rd (TY) 0 Rd (TZ) 0
Συντελεστές Συμμετοχής Φάσματος Απ PFx 0 Γ	όκρισης Fy Ω 0 PFz Ω 0
Εκκεντρότητες	
Τυχηματικές Φ	άσμα Απόκρισης Default OK
е тіх 0.1 *Lx	Ενημέρωση Φόσματος Cancel
	ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

at

Where you enter the necessary information about the seismic area, the ground and building, as well as the earthquake coefficients and application levels.

Σεισμική Περιοχή						
	Σεισ	σμικές Περ	οιοχές			
Ζώνη	I	∨ a	0.16			

Select the seismic zone, after first updating the .txt file that opens by clicking "Seismic Areas" for the number of the zone corresponding to the municipality where your study belongs. Select the number from "Zone" list and the factor "a" is automatically filled in.

Χαρακτηριστικές Περίοδοι						
Εδαφος	Τ1	0.1				
Α	~ T2	0.4				

Select the "soil category" from the list and the fields of the period characteristics "T1" and "T2" are automatically updated,

🖹 eak2003.bxt - WordPad		From
File Edit View Insert Format Help		110111
ΝΟΜΟΣ ΑΘΗΝΩΝ		
ΔΗΜΟΙ ΖΩΝΗ		at
Δ. ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ Ι	α=0.16	
Δ. ΑΓΙΑΣ ΠΑΡΑΣΚΕΥΗΣ Ι	α=0.16	<u></u>
Δ. ΑΓΙΟΥ ΔΗΜΗΤΡΙΟΥ Ι	α=0.16	011
Δ. ΑΘΗΝΑΙΩΝ Ι	α=0.16	
Δ. ΑΙΓΑΛΕΩ Ι	α=0.16	
Δ. AAIMOY I	α=0.16	
Δ. ΑΜΑΡΟΥΣΙΟΥ Ι	α=0.16	
Δ. ΑΡΓΥΡΟΥΠΟΛΕΩΣ Ι	α=0.16	
Δ. ΒΡΙΛΗΣΣΙΩΝ Ι	α=0.16	
Δ. ΒΥΡΩΝΟΣ Ι	α=0.16	
Δ. ΓΑΛΑΤΣΙΟΥ Ι	α=0.16	
Δ. ΓΛΥΦΑΔΑΣ Ι	α=0.16	
Δ. ΔΑΦΝΗΣ Ι	α=0.16	
Δ. ΕΛΛΗΝΙΚΟΥ I	α=0.16	
Δ. ΖΩΓΡΑΦΟΥ Ι	α=0.16	
Δ. ΗΛΙΟΥΠΟΛΕΩΣ Ι	α=0.16	
Δ. HPAKAEIOY I	α=0.16	
Δ. ΚΑΙΣΑΡΙΑΝΗΣ Ι	α=0.16	
Δ. ΚΑΛΛΙΘΕΑΣ Ι	α=0.16	
Δ. ΚΗΦΙΣΙΑΣ Ι	α=0.16	
Δ. ΜΕΛΙΣΣΙΩΝ Ι	α=0.16	
Δ. ΜΟΣΧΑΤΟΥ Ι	α=0.16	
Δ. ΝΕΑΣ ΕΡΥΘΡΑΙΑΣ Ι	α=0.16	
Δ. ΝΕΑΣ ΙΩΝΙΑΣ Ι	α=0.16	
Δ. ΝΕΑΣ ΣΜΥΡΝΗΣ Ι	α=0.16	
Δ. ΝΕΑΣ ΧΑΛΚΗΔΟΝΟΣ Ι	α=0.16	
A. NEOY WYXIKOY	α=0.16	
A. HANAIOY ΦΑΛΗΡΟΥ	α=0.16	
	α-0.10	
	α-0.10	
1 4. HEIKAL 1	α-0.10	

Σπουδαιότητα	and "importance category" to automatically fill in importance factor "y".
Ζώνη Σ2 🗸	
Yi 1	
Συντελεστές	
θ 1 βο	2.5 qx 3.5
ζ(%) 5 n	1 qz 3.5

In the "Coefficients" field you can modify the default values related to the seismic spectrum by typing in the corresponding fields. The seismic coefficients "qx" and "qz" are filled in by the designer after taking into account all the necessary requirements of the NAC.

Επίπεδ	a XZ			
Κάτω	0 - 0.00	~	Ανω	3 - 1050.00 $ \smallsetminus $

In the field "Levels HZ" you select the lower and the upper level for application of seismic actions (for buildings with basement and/or staircase termination, etc.)

Define the number of Eigenvalues and the Accuracy, and you are also given the choice of how to superimpose the eigenmodal responses according to either the CQC and CQC(10%) (3.4.3.

Δυναμική Ανάλυση		CQC (10'
Ιδιοτιμές	10	CQC
	SRSS	

& C.3.4.3 of the NAC), or by the SRSS Simple Quadratic Parallelism rule.

To modify the coefficients for the eccentricities, select the corresponding checkbox and enter the new value on the right.

Εκκεντρότητες					
Τυχηματικές					
е тіх		0.1	*Lx		
е тіз		0.1	*Lz		

In the same way, the designer can modify the spectra by X, Y and Z by entering his own values in the corresponding fields, as well as the Response Spectrum Participation Coefficients

Rd (T) Rd (TX) 0	Rd (TY)	Rd (TZ)
Συντελεστές Συμμετοχής Φά	άσματος Απόκρισης	

Finally, to update the spectrum for the new parameters, either select the

Ενημέρωση
Φάσματος

command , or click on the "Response Spectrum" command and within the dialog box, click on "Default".

After you have selected the parameters select "OK".

to store the parameters and close the dialog box.

Φάσμα Απόκρισης Επιταχύνσεων × RdTy RdTz T(s.. RdTx * 0.000 1.099 1.570 1.570 2 0.050 1.345 1.334 1.345 3 0 100 1.121 1 570 1.121 4 0.150 1.121 1.570 1.121 5 0.200 1.570 1.121 1.121 6 0.250 1.121 1.570 1.121 7 0.300 1.121 1.570 1.121 8 0.350 1.121 1.570 1.121 9 0.400 1.121 1.570 1.121 10 0.450 1.036 1.451 1.036 -11 0.500 0.966 1 353 0.966 Default OK Cancel

Finally, within the run window, select the "Automatic Process" command. If there is an error in your study then the analysis process will be interrupted and the corresponding message will be displayed. When the program completes the automatic process green n's will appear next to each stage of the analysis as shown in the figure below.

Dynamic Seismic Action Procedure (E.A.K.)					\times	
	Παράμετροι	Κέντρα Μάζα	xς (cm)			~
	Αυτόματη Διαδικασία	Level	Х	γ	Z	^
Διαδ	ικασία	0 - 0.00	0.00	0.00	0.00	
\checkmark	Μάζες	1 - 300.00	300.00	300.00	300.00	
	Στατικές Φ3 , Φ4					
	T>1					
	Εκκεντρότητες					
1	Δυναμική Ανάλυση					~
	Ενημέρωση Δεδομένων		Εξα	οδος		

OBSERVATIONS:

If you do not have a baffle node in the vector the program will display a message that the analysis will be performed without considering this node as shown in the figure below.

This message appears in the static EAK analysis. On the contrary, it does not appear in the dynamic ET and in the simple static analysis. Select yes and continue.

For to

you can amension not only the superstructure AND the foundation with the combinations of dynamics (and not be forced to create an additional statics scenario), you should before running the analysis, to "Open" the springs of the

foundation at under Kóµβox of the dynamic scenario:

OBSERVATION:

In the new versions of SCADA Pro all scenarios "Open" the springs by default.

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

For the criteria for exemption from the structural adequacy test for existing buildings, see: "Criteria for exemption from the structural adequacy inspection of existing buildings, according Government Gazette 350/17-2-2016", p. 25.

1.Σ4 Seismic Analysis and Press Old 1959-84

Select Seismic Analysis and Type Old 1959-84 and press the New button.

ATTENTION:

▲ The materials must be in accordance with the selected regulation, and when entering data, all cross-sections must have the correct grades (B for Old Regulation scenarios)

Scenario	N		×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)		Advanced Multi-Threaded	Solver
🗌 Ακύρωση	Ονομα		
Seismic Παλαιός 1959-84 (0)	Ανάλυση	Seismic	~
	Τύπος Ιδιότητες	Παλαιός 1959	-84 ~
	Μέλι	l Ká	όμβοι
	Φορτίσ	εις	Ιάζες
	Nέo	Evr	ιμέρωση
	Εκτέλεσ	η ολων των αν	αλύσεων
		Εξοδος	

Having selected Seismic Old 1959-84, to set the parameters, the dialog box will have the following format:

Παλαιός 1959-84 Χ				
Σεισμική Περιοχή		Χαρακτηριστικές Π	Ιερίοδοι	Σπουδαιότητα
Σεισμικ	ές Περιοχές	Εδαφος Τ1	0.1	Ζώνη Σ1 🗸
Ζώνη ΙΙ 🗸	/ a 0.06	A ~ T2	0.4	γi 1
Συντελεστές		Επίπεδα ΧΖ		
θ 1 βο	2.5 qx 3.5	Κάτω 0 - (v <i>≨</i> √ 00.0	Υψόμετρο στο 0.8*Η
ζ(%) ⁵ n ¹	1 qz 3.5	Ανω 3 - 3	1050.00 ~	2 - 700.00 🗸 🗸
Εκκεντρότητες Τυχηματικές e τιχ 0.0)5 *Lx e	τοδύναμες Στατικές fxi 1.5 *	eoxi erxi	0.5 *eox
Rd (T)	5 °Lz e	121	eozi erzi	0.5 °eozi
Rd (TX) 🗌 0	Rd (T	Y) 🗌 0	Rd (TZ)	0
Γωνία Κυρίων Επιπέδων Κάμψης Γωνία α 0 (+) Αριστερόστροφα () Δεξιόστροφα				
Default Λεπτομέρειες				
ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ ΟΚ Cancel				

Enter, as in the static scenario of the EAK, the necessary information the seismic area (Zones I, II, III), the terrain and the significance.

File Edit View Inser Format Help	🗒 tmp_extract.txt - WordPad			
CONTROL CONTRCICU CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTRC	File Edit View Insert Format Help			
ΕΔΝΕΙ Ι. Ασθενώς σεισμόπληκτοι περιοχαί. ΙΙΙ. Ισχυρώς σεισμόπληκτοι περιοχαί. Οίκισμοί ή περιοχές μη περιλαμβανόμενα στον πίνακα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίνακα στους οποίους βρίσκονται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία (Δμβοίσης) Ι Αγίος (Γμαρίος) Ι Ανίος (Γμαρίος) Ι Ανίος (Γμαρίος) Ι Ανρίνιον Ι Ανομορός Ι Αμαλιάς Ι Αμαρίας Ι Αμαρίας Ι Αμαρίας Ι Ανόρος Ι Ανόρος Ι Ανόρος Ι Ανόρος Ι Ανόρος Ι Ανόρος Ι		6		
Ι. Ασθενώς σεισμόπληκτοι περιοχαί. ΙΙ. Μετρίως σεισμόπληκτοι περιοχαί. ΙΙΙ. Ισχυρώς σεισμόπληκτοι περιοχαί. Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίνακα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίνακα στους οποίους βρίσκονται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία (Δαρίσης) Ι Αγίος Κήρυκος (Ικαρίας) Ι Αγοίταα (Τμβρου) ΙΙ Αρίταα (Τμβρου) ΙΙ Αρίγιαι Ι Αιτωλικόν ΙΙ Αιτωλικόν ΙΙ Αλεξανδρούπολις Ι Αμαριάς ΙΙ Αμαριός ΙΙ Αμαριός ΙΙ Αμαριός ΙΙ Αμαριός ΙΙ Αμαριός ΙΙ Αμαριόχία ΙΙ Ανώφη Ι Ανώφη Ι Ανώφη Ι Ανώφη ΙΙ Ανόφοι ΙΙ Αρόχοδο ΙΙ Αρόγοστόλιον ΙΙΙ Αρογοστόλιον ΙΙΙ Αρογοστόλιον ΙΙΙ Αρογοστόλιον ΙΙΙ	ΖΩΝΕΣ			
Ι. Ασθενώς σεισμόπληκτοι περιοχαί. ΙΙ. Μετρίως σεισμόπληκτοι περιοχαί. ΙΙΙ. Ισχυρώς σεισμόπληκτοι περιοχαί. Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίνακα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίνακα στους οποίους βρίσκονται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία Αννα ΙΙ Αγία Αννα ΙΙ Αγίας Καρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγοίναν Ι Ανθήναι Ι Ανθήναι Ι Αιτομικάν ΙΙ Αιτωμικάν ΙΙ Αλμομός Ι Αμαρίσα ΙΙ Αμαρίσα ΙΙ Αμαρίσα ΙΙ Αμαρίσα ΙΙ Αμαρίσα ΙΙ Ανδρίτσαινα ΙΙ Ανδρίτσαινα ΙΙ Ανδρίτσαινα ΙΙ Ανδρίτσαινα ΙΙ Ανδρίσαινα ΙΙ Ανδρίος Ι Αντιμάχεια (Κώ) ΙΙΙ Αργοστόλιον ΙΙΙ Αργοστόλιον ΙΙΙ				
 ΙΙ. Μετρίως σεισμόπληκτοι περιοχεί. ΙΙΙ. Ισχυρώς σεισμόπληκτοι περιοχεί. Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίνακα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίνακα στους οποίους βρίσκονται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία (Δρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγοίτοα (Τμβρου) ΙΙ Αγίος (Τμβρου) ΙΙ Ανρίτοα (Τμβρου) ΙΙ Αλεξανδρούπολις Ι Αλεξανδρούπολις Ι Αμαλιάς ΙΙ Αμογός Ι Αμφισα ΙΙ Ανδρίσαινα ΙΙ Ανδρίσαινα ΙΙ Ανδρίσαι Ι Ανδρίσαι Ι Ανδρίσαι Ι Ανδρίσαι Ι Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρος Ι Ανδρίσαινα ΙΙ Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρος Ι Ανδρίσαι ΙΙ Ανδρίσαι ΙΙ Ανδρος Ι Ανδρίσαι ΙΙ Ανδρος Ι Ανδρισαινα ΙΙ Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρισαινα ΙΙ Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρος Ι Ανδρισαινα ΙΙ Ανδρος Ι 	Ι. Ασθενώς σεισμόπληκτοι περιοχαί	•		
 ΙΙΙ. Ισχυρώς σεισμόπληκτοι ηξριοχαί. Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίναχα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίναχα στους οποίους βρίσκονται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγιά (λαρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγρίταα (Τμβρου) ΙΙ Αίδηψός Ι Αιδηψός Ι Αιτωλικόν ΙΙ Αλμυρός Ι Αμαλιάς ΙΙ Αμογός Ι Ανδρίσαινα ΙΙ Ανδρίσαινα ΙΙ Ανδρος Ι Ανδρίσαινα ΙΙ Ανδρος Ι 	II. Μετρίως σεισμόπληκτοι περιοχα	cí.		
Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίναχα λαμβάνουν τιμές αντίστοιχες των οικισμών του παραπάνω πίνακα στους οποίους βρίσκονται εγγύτερα. ΑΗΜΟΙ ΖΩΝΗ Αγία Άννα ΙΙ Αγία Άννα ΙΙ Αγίας Κήρυκος (Ικαρίας) Ι Αγοίσας (Πμβρου) ΙΙ Αγρίνιον Ι Αθήναι Ι Αιτωλικόν ΙΙ Αλεξανδρούπολις Ι Αλεφαδρούπολις Ι Αμαριόςς Ι Αμαριόςς Ι Αμαριόςς Ι Αμφισσα ΙΙ Ανάφη Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Απείριον (Καρπάθου) ΙΙ Αράχωβα ΙΙ Αργοτόλιον ΙΙΙ Αργοτόλιον ΙΙΙ	III. Ισχυρώς σεισμόπληκτοι πέριοχ	αί.		
οικομού πίνακα στους οποίους βρίσκουται εγγύτερα. ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία (Δαρίσης) Ι Αγος Κήρυκος (Ικαρίας) Ι Αγρίταα (Ιμβρου) ΙΙ Αγρίταα (Ιμβρου) ΙΙ Αιξηνός Ι Αιξηνός Ι Αιξηνός Ι Αιτωλικόν ΙΙ Αλεφόδούπολις Ι Αμαριός Ι Ι Αμαριός Ι Ι Αμαριός Ι Ι Αριότόλιον Ι Αμαι		ດ່າງຂຸ່ນດ		πίνακα λαυβάνουν τινές αντίστοιχες των οικισυών
ΔΗΜΟΙ ΖΩΝΗ Αγία Άννα ΙΙ Αγία (Δρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγρίταα (Τμβρου) ΙΙ Αγρίταα (Τμβρου) Ι Αγία (Δρίσης) Ι Αγρίταα (Τμβρου) Ι Αγρίταα (Τμβρου) Ι Αγρίταα (Τμβρου) Ι Αντοί Ι Ανίγιον Ι Αιταλικόν ΙΙ Αιταλικόν ΙΙ Αμαριός Ι Αμαριός Ι Αμαριός Ι Αμαριός Ι Αμαριός Ι Αμοργός Ι Αμορίαα ΙΙ Ανδρίτσαινα ΙΙ Ανδρίτσαινα ΙΙ Ανδρός Ι Αντιμάχεια (Κώ) ΙΙΙ Αργος Ι Αργοςτόλιον ΙΙΙ Αργοττόλιον ΙΙΙ	του παραπάνω πίνακα στους οποίους	Boic	KOVTO	ι εννύτερα.
ΔΗΜΟΙ ΖΩΝΗ Αγία Αννα ΙΙ Αγία (Δαρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγρίνιον Ι Αγρίνος Ι Αγρίνος Ι Αμαριός Ι Αμαριός Ι Αμογός Ι Ανάφη Ι Ανόφη Ι Αντιμάχεια (Κώ) ΙΙ Αρείριον (Καρπάθου) ΙΙ Αργος Ι Αργοτότλιος ΙΙ Αργοτοτόλιος ΙΙ	loo mapanava nevana oroog onoroog	ppro		· cilotopa.
Αγία Άννα ΙΙ Αγιά (Δαρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγρίνιον Ι Αγρίνιον Ι Αθήναι Ι Αίγιον ΙΙ Αίγιον Ι Αμομός Ι Αμαλιάς Ι Αμοργός Ι Αμοργός Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρίτσαινα ΙΙ Αντιμάχεια (Κώ) ΙΙΙ Αράχωβα ΙΙ Αρόχος Ι Αρόχοτόλιον ΙΙ Αροστόλιος ΙΙ Αρτόπολις ΙΙ	ΔΗΜΟΙ	ZS	NH	
Αγιά (Λαρίσης) Ι Αγιος Κήρυκος (Ικαρίας) Ι Αγρίτσα (Τμβρου) ΙΙ Αγρίτσα (Τμβρου) ΙΙ Αθήναι Ι Αθήναι Ι Αιγιον ΙΙ Αιγιον ΙΙ Αιγιον Ι Αμορός Ι Αμορός Ι Αμοιός Ι Αμοιός Ι Αμοιός Ι Αμοιός Ι Αμοιός Ι Αμοιός Ι Ανόφη Ι Ανόφη Ι Ανόφης Ι Αντιμάχεια (Κώ) ΙΙ Αρος Ι Αρος Ι Αρος Ι Αρος Ι Αρος Ι Αρος Ι Αροςοτόλιον ΙΙ	Αγία Αννα Ι	I		
Αγιος Κήρυκος (Ικαρίας) Ι Αγρίτσα (Τμβρου) ΙΙ Αγρίνιον Ι Αθήναι Ι Αίγιον ΙΙ Αίγινα Ι Αισμός Ι Αμαρός Ι Αμαργός Ι Αμοργός Ι Αμοιόσα Ι Ανάφη Ι Ανάφη Ι Ανόρος Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Ανδρος Ι Ανόμαμα Ι Αργος Ι Αργος Ι Αργος Ι Αργοστόλιον ΙΙΙ Αργοπολις Ι	Αγιά (Λαρίσης)		I	
Αγρίτσα (Τμβρου) ΙΙ Αγρίνιον Ι Αθήναι Ι Αιγιον ΙΙ Αιγιον Ι Αίγινα Ι Αιδηψός Ι Αιτωλικόν ΙΙ Αλτωλικόν ΙΙ Αλμορός Ι Αμαλιάς Ι Αμοργός Ι Αμφισσα Ι Ανδρισαινα Ι Ανδρος Ι Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αργοστόλιον ΙΙ Αρεόπολις Ι	Αγιος Κήρυκος (Ικαρίας)		I	
Αγρίνιον Ι Αθήναι Ι Αιγιον ΙΙ Αίγινα Ι Αιδηψός Ι Αιδηψός Ι Αιδηψός Ι Αιδηψός Ι Αλεξανδρούπολις Ι Αμαριός Ι Αμφιλοχία Ι Ανδρίτσαινα ΙΙ Αργος Ι Αργος Ι Αργοτόλιον ΙΙΙ	Αγρίτσα (Ίμβρου) Ι	I		
Αθήναι Ι Αιγιον ΙΙ Αίγινα Ι Αιδηψός Ι Αιταλικόν ΙΙ Αλεξανδρούπολις Ι Αλμυρός Ι Αμαλιάς ΙΙ Αμοργός Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Ανδρος Ι Αργοστόλιον ΙΙ Αργοστόλιος Ι	Αγρίνιον	I		
Αιγιον ΙΙ Αίγινα Ι Αιτώλικόν Ι Αιτώλικόν ΙΙ Αλεξανδρούπολις Ι Αλμυρός Ι Αμαλιάς Ι Αμοργός Ι Αμοργός Ι Αμφισσα ΙΙ Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Ανδρος Ι Ανδρος Ι Αγόρος Ι Αργος Ι Αργοστόλιον ΙΙΙ	Αθήναι		I	
Αίγινα Ι Αιδηψός Ι Αιτωλικόν ΙΙ Αλεξανδρούπολις Ι Αλμορός Ι Αμαλιάς Ι Αμοργός Ι Αμοισαα Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αρόγος Ι Αργοστόλιον ΙΙ	Αιγιον		II	
Αιδηψός Ι Αιτωλικόν ΙΙ Αλεξανδρούπολις Ι Αλμυρός Ι Αμαλιάς ΙΙ Αμοργός Ι Αμοιοχία Ι Ανάφιλοχία Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αργοστόλιον ΙΙ Αργοστόλιος Ι	Αίγινα		I	
Αιτωλικόν ΙΙ Αλεξανδρούπολις Ι Αλμυρός Ι Αμαλιάς ΙΙ Αμοργός Ι Αμφιοσα Ι Αμφιλοχία Ι Ανδριτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αργοστόλιον ΙΙ Αργόστόλιος Ι	Αιδηψός	I		
Αλεξανδρούπολις Ι Αλμυρός Ι Αμαλιάς ΙΙ Αμοργός Ι Αμφιλοχία Ι Αμφιλοχία Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙ Αράχωβα ΙΙ Αργοστόλιον ΙΙ	Αιτωλικόν Ι	I		
Αλμυρός Ι Αμαλιάς ΙΙ Αμοργός Ι Αμφισσα Ι Αμφισσα Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αράχωβα ΙΙ Αργοστόλιον ΙΙ	Αλεξανδρούπολις	I		
Αμαλιάς ΙΙ Αμοργός Ι Αμφισσα ΙΙ Αμφισσα Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αράφα ΙΙ Αργοστόλιον ΙΙ Αρεόπολις Ι	Αλμυρός		I	
Αμοργός Ι Αμφισσα Ι Αμφιλοχία Ι Ανάρη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αράχωβα ΙΙ Αργοστόλιον ΙΙ Αρεόπολις Ι	Αμαλιάς Ι	I		
Αμφισσα ΙΙ Αμφιλοχία Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αράχωβα ΙΙ Αργοστόλιον ΙΙ Αρεόπολις Ι	Αμοργός		I	
Αμφιλοχία Ι Ανάφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Αρτίριον (Καρπάθου) ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Αμφισσα Ι	I		
Αναφη Ι Ανδρίτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Απείριον (Καρπάθου) ΙΙ Αράχωβα ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Αμφιλοχία	I	_	
Ανδριτσαινα ΙΙ Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Απείριον (Καρπάθου) ΙΙ Αράχωβα ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Ανάφη		I	
Ανδρος Ι Αντιμάχεια (Κώ) ΙΙΙ Απείριον (Καρπάθου) ΙΙ Αράχωβα ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Ανδριτσαινα		11	
Αντιμαχεία (Κω) III Απείριον (Καρπάθου) II Αράχωβα II Αργος I Αργοστόλιον III Αρεόπολις I	Ανδρος	-	T	
Aπειριον (καρπαθού) ΙΙ Αράχωβα ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Αντιμαχεία (Κω) ΙΙ	1		
Αραχωρα ΙΙ Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Απειριον (Καρπαθου)	-	11	
Αργος Ι Αργοστόλιον ΙΙΙ Αρεόπολις Ι	Αραχωρά Ι			
Αρεόπολις Ι	Αργος	÷.,		
Apcolority I	λοτόπολια	т		
	- Apeononic G	-		

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

For the criteria for exemption from the structural adequacy test for existing buildings, see: "Criteria for exemption from the structural adequacy inspection of existing buildings, according Government Gazette 350/17-2-2016", p. 25.

To save the parameters and close the dialog box. Παλαιός 1959-84

To run the

analysis.

1.Σ5 Seismic Analysis and Press Old 1984-93

Select Seismic Analysis and Type Old 1984-93 and press the New button.

ATTENTION:

▲ The materials must be in accordance with the selected regulation, and when entering data, all cross-sections must have the correct grades (B for Old Regulation scenarios)

Scenario	•	×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~ D	Advanced Multi-Threaded Solver
Ακύρωση	Ονομα	
Seismic Παλαιός 1984-93 (0)	Ανάλυση	Seismic 🗸
	Τύπος Ιδιότητες	Παλαιός 1984-93 🛛 🗸
	Μέλι	γ Κόμβοι
	Φορτία	τεις Μάζες
	Nέo	Ενημέρωση
	Εκτέλεσ	η ολων των αναλύσεων
		Εξοδος

Having selected Seismic Old 1984-93, to set the parameters, the dialog box will have the following format:

Παλαιός 1984-93	×		
Σεισμική Περιοχή	Χαρακτηριστικές Περίοδοι Σπουδαιότητα		
Σεισμικές Περιοχές	Εδαφος Τ1 0.1 Ζώνη Σ1 Υ		
Zώνη II ~ a 0.06	Α ~ T2 0.4 Yi 1		
Συντελεστές	Eninεδα XZ		
θ 1 βο 2.5 qx 3.5	Κάτω 0 - 0.00 Υψόμετρο στο 0.8*Η		
ζ(%) 5 n 1 qz 3.5	Avω 3 - 1050.00 ∨ 2 - 700.00 ∨		
Εκκεντρότητες			
Τυχηματικές	(σοδύναμες Στατικές		
е тід 0.05 *Lx е	e fxi 1.5 *eoxi e rxi 0.5 *eoxi		
е тід 0.05 *Lz е	e fzi 1.5 *eozi e rzi 0.5 *eozi		
Rd (T)			
Rd (TX) 0 Rd (TY) 0 Rd (TZ) 0		
Γωνία Κυρίων Επιπέδων Κάμψης			
Γωνία α 0 (+) Αρισ	στερόστροφα () Δεξιόστροφα		
Default Λεπτομέρειες	ç		
ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ ΟΚ Cancel			

Enter, as in the static scenario of the EAK, the necessary information the seismic area (Zones I, II, III), the terrain and the significance.

I tmp_extract.txt - WordPad			
File Edit View Insert Format Help			
D 26 6 8 8 8 6 6	ю В		
ΖΩΝΕΣ			
Ι. Ασθενώς σεισμόπληκτοι πε ΙΙ. Μετρίως σεισμόπληκτοι π ΙΙΙ. Ισχυρώς σεισμόπληκτοι	ριοχαί. εριοχαί. π <u>≹</u> ριοχαί.		
Οικισμοί ή περιοχές μη περιλαμβανόμενα στον πίνακα λαμβάνουν τιμές αντίστοιχες των οικισμών			
του παραπανω πινακα στους ο	ποιους βρ	ισκοντ	αι εγγυτερα.
ΔΗΜΟΙ		ZQNH	
Αγία Αννα	II		
Αγιά (Λαρίσης)		I	
Αγιος Κήρυκος (Ικαρίας)		I	
Αγρίτσα (Ίμβρου)	II		
Αγρίνιον	I		
Αθήναι		I	
Αιγιον		II	
Αίγινα		I	
Αιδηψός	I		
Αιτωλικόν	II		
Αλεξανδρούπολις	I		
Αλμυρός		I	
Αμαλιάς	II		
Αμοργός		I	
Αμφισσα	II		
Αμφιλοχία	I		
Ανάφη		I	
Ανδρίτσαινα		II	
Ανδρος		I	
Αντιμάχεια (Κώ)	III		
Απείριον (Καρπάθου)		II	
Αράχωβα	II		
Αργος	I		
Αργοστόλιον		III	
Αρεόπολις	I		
For Help, press F1			

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

For the criteria for exemption from the structural adequacy test for existing buildings, see: "§ Criteria for exemption from the structural adequacy inspection of existing buildings, according to Government Gazette 350/17-2-2016", p. 22.

ΟΚ To save the parameters and close the dialog box. Παλαιός 1984-93 To run the

analysis.

1.Σ6 EUROcode scenarios

Static
Dynamic
Seismic
EC-8_Greek
NTC_2008
EC8_Italia
EC8_Cyprus
EC8_Austrian
EC8_General
SBC 301
Polska-obszar LGOM

SCADA Pro includes the Eurocode 8 in general form (EC-8_General), while it also includes the national annexes for Greece (EC-8_Greece), Cyprus (EC-8_Cyprus), Italy (EC-8_Italia) and Austria (EC-8_Austrian).

In the option to create scenarios and select the type of analysis "EC8_Greek", there are the following types of analysis scenarios:

The types:

- Static
- Dynamic

They are used for the analysis of new buildings based on EC8 and the Greek national annexes.

All the following types:

- Anelastic
- Elastic Static
- Elastic Dynamic
- Static pre-testing
- Dynamic pre-testing

They are used for the valuation and redesign of existing structures based on the provisions of the CEA.

IMPORTANT ADDITION

In the new version of SCADA Pro and in the Eurocode scenarios, the lack of torsion is displayed graphically in a plan view in green, the circle of inertia in red and a rectangle in blue, which refers to the criterion of limitation of eccentricity.

The circle and the ellipse relate to the criterion of torsional drift $Rx \ge Is$

i.e. the torsion radius is greater than or equal to the inertia radius.

The check is performed per direction and is met for both directions when the red circle is contained in the inertia ellipse (as in the picture above).

The second check concerns the eccentricities eox and eoz which are the x and z distance of the centre of torsion Po from the centre of mass M. These eccentricities must be less than 0.30^* rx and 0.30^* rz respectively. This condition is fulfilled when Po is inside the blue square (as in the figure above).

Recall that the centre of mass M and the bulkhead node coincide after the analysis is performed and the masses are calculated because the initial calculation of the bulkhead node is based only on the geometry of the nodes.

1.Σ6.1 Analysis of EC-8_Greek and Static Type

Select EC-8_Greek Analysis and Static Type and press the New button.

ATTENTION: Materials must be in accordance with the selected regulation, and when entering data, all cross-sections must have the correct grades (C for the scenarios of EC8)

Scenario		ar a	Х
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Threaded Solver	r
🗌 Ακύρωση	Ονομα		
EC-8_Greek Static (0)	Ανάλυση	EC-8_Greek	\sim
	Τύπος Ιδιότητες	Static	~
	Μέλι	η Κόμβοι	
	Φορτία	τεις Μάζες	
	Nέo	Ενημέρωα	η
	Εκτέλεσ	η ολων των αναλύσε	ων
		Εξοδος	

1.Σ6.2 Analysis of EC-8_Greek and Type Dynamic

Select Resolution EC-8_Greek and Type Dynamic and press the New button.

ATTENTION: Materials must be in accordance with the selected regulation, and when entering data, all cross-sections must have the correct grades (C for the scenarios of EC8)

Scenario		×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	ᇇ Advanced Multi-Threaded Solver
🗌 Ακύρωση	Ονομα	
EC-8_Greek Dynamic (0)	Ανάλυση	EC-8_Greek ~
	Τύπος	Dynamic ~
	Ιδιότητες	
	Μέλι	η Κόμβοι
	Φορτία	τεις Μάζες
	Νέο	Ενημέρωση
	Εκτέλεσ	η ολων των αναλύσεων
		Εξοδος

1.S6.1&S6.2 EC-8_Greek Static and EC-8_Greek Dynamic analyses

All of the following applies to **EC-8_Greek** for both the **Static** and **Dynamic** types and that is why they are described once for both.

In Members the Multipliers are automatically updated and filled in with the

				Σκυρ Χάλυ Χάλυ Ξύλη Ξύλη Τοιχι Ψυχι	οόδεμα οόδεμα υβας-Τυπικ υβας-Συγκ νες Τυπικα νες Χρήστ οποιία ρής Έλασι	 <!--</th--><th></th><th></th><th></th><th></th>				
corresponding	g coe	fficie	nts fo	n M.I.	Π. Τοιχοπ	^{oia} r	espec	tivel		
Πολλαπλασιαστές Τιμ	ών Ιδιο	τητων								×
EC-8_Greek Static	ύν Ιδιοτή	των Γοαι	ι ικών Με	λών						\sim
Σκυρόδεμα 🗸	E	G	Ak	Asy	Asz	ε	Ix	Iy	Iz	
ΔOKOI - B3D	1	1	1	1	1	1	0.1	0.5	0.5	ר
∆OKOI - TRUSS	1	1	1	1	1	1	0.1	0.5	0.5	i
∆OKOI - B3Def	1	1	1	1	1	1	0.1	0.5	0.5	1
ΣΤΥΛΟΙ - B3D	1	1	1	1	1	1	0.1	0.5	0.5	i
	1	1	1	1	1	1	0.1	0.5	0.5	=
	1	1	1	1	1	1	0.1	0.5	0.5	=
TOIXEIA - B3D	1	1		1	1	1	0.1	0.5	0.5	=
TOIXEIA - TRUSS	-	-		-	-	-				
Torzcia (Lmax/Lmin) > 4 OK Cancel										
Πολλαπλασιαστές Τιμ	ιών Ιδιο	τήτων								Х
EC-8_Greek Static				D	2					\sim
Πολλαπλασιαστές Τιμα	ών Ιδιοτή Ε	των Γραμ	μικών Με	λών –) Acr	_	Ter	Tu	T	
Σιδηρά ∨	- 1	1		ASy 1		د ۱	1	1	12	
20001-830	<u> </u>			-		-				-
∆OKOI - TRUSS				1		1				-
∆OKOI - B3Def	1	1	1	1	1	1	1	1	1	
ΣΤΥΛΟΙ - B3D	1	1	1	1	1	1	1	1	1	
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	1	1	1	
TOIXEIA - B3D	1	1	1	1	1	1	1	1	1	
TOIXEIA - TRUSS	1	1	1	1	1	1	1	1	1	
Τοιχεία (Lmax/Lmin) >	4				С	Ж		Cancel		
Πολλαπλασιαστές Τιμ	ιών Ιδιο	τήτων								\times
EC-8_Greek Static										\sim
Πολλαπλασιαστές Τιμ	ών Ιδιοτή Ε	των Γραι G	μμικών Με Λŀ	λών —	Ac7	e	Īv	Tv	17	
M.I.R. Toixonoii V	1	1	1	ASY 1	1	1	1	1 1	12	
20001-030	Ľ.	H		-		-				-
∆OKOI - TRUSS				1						-
∆OKOI - B3Def	1	1	1	1	1	1	1	1		4
ΣΤΥΛΟΙ - Β3D	1	1	1	1	1	1	1	1		
ΣΤΥΛΟΙ - TRUSS	1	1	1	1	1	1	1	1	1	
TOIXEIA - B3D	1	1	1	1	1	1	1	1	1	
TOIXEIA - TRUSS	1	1	1	1	1	1	1	1	1	
Τοιχεία (Lmax/Lmin) >	4	ł			C	Ж		Cancel		

In the Loadings, for G, set the unit to LC1 (permanent) and for Q, set the unit to LC2 (mobile) and press the Update button.

Συμμετοχή Φορτίσεων Χ											
EC-8_Greek Stat Φορτίσεις Σεναρίου	ic g(m/sec2)	9.81		Διαθέ	σιμες Φ	ορτίσει	ς και Ομι	άδες φο	ρτίων		
G(1) + Q(2) +	LC LC1 LC2	LG1 1.00 0.00	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	LG10
			[OK			Cance	el			

With either the EC-8_Greek Static or the EC-8_Greek Dynamic scenario active,

The Run command opens the window for running the script and by pressing Update Data, the commands are activated:

Υπολο	Υπολογισμός Σεισμικών Δράσεων - Ανάλυση - Ελεγχοι 🛛 🗙							
	Παράμετροι	Κέντρα Μάζας ((cm)			~		
	Αυτόματη Διαδικασία	Level	Х	γ	Z	^		
Διαδιι		0 - 0.00	0.00	0.00	0.00			
	Μάζες-Ακαμψίες	1 - 350.00	0.00	350.00	0.00			
	Κανονικότητα	2 - 700.00	0.00	700.00	0.00			
	Κανονικό Σε κάτοψη	3 - 1050.00	0.00	1050.00	0.00			
	Καθ΄υψος					-		
	Ισοδύναμη					-		
	Ανάλυση					~		
	Ενημέρωση Δεδομένων		Eξ	οδος				

To set the parameters, either the EC-8_Greek Static or the EC-8_Greek Dynamic scenario, the dialog box will have the following format:

Παράμετροι ΕC8	×
Σεισμική Περιοχή Χαρακτηριστικές Περίοδοι Σεισμικές Περιοχές Τύπος Φάσματος Οριζόντιο Ζώνη Ι a 0.16 *g Γύπος 1 v s,avg 1.2 0.9 δ. (AN.EΠΕ.) 0.16 *g Εδαφος TB(s) 0.15 0.05 Σπουδαιότητα Τύπος 1 S,avg 1.2 0.9 Σάψη ΙΙ Vi 1 Vi 1 0.15 0.15 Φάσμα Φάσμα Απόκρισης Σχεδιασμού Κλάση Πλαστιμότητος DCM ζ(%) 5 Οριζόντιο b0 2.5 Kατακόρυφο b0 3	Επίπεδα ΧΖ εφαρμογής της σεισμικής δύναμης Κάτω 0 - 0.00 Ανω 1 - 300.00 Δυναμική Ανάλυση Ιδιοτιμές 10 Ακρίβεια 0.001 CQC Συντελεστές Συμμετοχής Φάσματος Απόκρισης PFx 0 PFy 0 PFz 0 Εκκεντρότητες Sd (T) Sd (TX) 1 1 ε τιχ 0.05 *Lx Sd (TY) 1
Φάσμα Απόκρισης Ενημέρωση Φάσματος Sd(T) >= 0.2 a*g Είδος Κατασκευής q	e πz 0.05 *Lz Sd (TZ) 1
Τύπος Κατασκεύης Χ Σύστημα Πλαισίων Ζ Σύστημα Πλαισίων	x τενα x Χωρίς εσοχές Z τενα z Χωρίς εσοχές
Ιδιοπερίοδοι Κτιρίου Χ Μέθοδος Υπολογισμού Χ Ιδιομορφική Ανάλυση Ζ	α χωρικά πλαίσια από Σκυρόδεμα · · · · · · · · · · · · · · · · · · ·
Οριο Σχετικής Μετακίνησης ορόφου 0.005 Κτίρια με πλάστιμα μη-φές ~	

OBSERVATION:

In all types of EC8-based analysis scenarios (static and dynamic) the parameter dialogue box has been modified compared to previous versions.

Enter the necessary information about the seismic area, the ground and the building, as well as the earthquake coefficients and application levels:

Select the Seismic Area to determine the Zone and therefore the Seismic Acceleration a:

Σεισμική Περιοχή	Περιοχές	\times
Σεισμικές Περιογές		~
	Δ. ΖΑΧΑΡΩΣ	\sim
Zώνη Ι 🗸 a 0.16 *g	Zώνη 1 a 0.24 OK Cancel	

Select the Spectrum Type and Terrain Category to define the Period Features:

- Χαρακτηριστικές Π	ερίοδοι —			
ζΤύπος Φάσματος	C	Οριζόντιο	Κατακόρ.	Túnoc 1 🔭
Τύπος 1 👘 🗸 🗸	S,avg	1.2	0.9	Túnoc 1
Εδαφος	TB(S)	0.15	0.05	Τυπός 2
в ~	TC(S)	0.5	0.15	A
	TD(S)	2	1	C
				E

Select the Spectrum Type and the Plasticity Class

Φάσμα					
Φάσμα Απόκρισης	Σχεδιασμού 🗸 🗸 🗸	Κλάση Πλα	ιστιμότητος	DCM	~ ~
ζ(%) 5	Οριζόντιο b0	2.5	Κατακόρυφο	b0 3	
Φάσμα Απόκρισης	Ενημέρωση Φ	άσματος	Sd(T) >=	0.2	a*g

Select the Type of Construction

E	ίδος Κατασκευής	
	Σκυρόδεμα 🗸 🗸	
_	Σκυρόδεμα	
1	Σιδηρά	
C	Σύμικτο	
	Αοπλη Τοιχοποιία	
т	Διαζωματική Τοιχοποιί	
Ì	Οπλισμένη Τοιχοποιία	
١	Χαμηλής Σεισμ.Τοιχοτ	

The selection of the Seismic Coefficient q and type of construction requires complex calculations.

SCADA Pro allows the designer to get rid of them and follow the procedure described in the next chapter: "§ How to calculate the seismic coefficient q" p.47

The Relative Floor Movement Limit, modified by regulation according to the option on the right:

Οριο Σχετικής Μετακίνησης ορόφου		0.005	Κτίρια με πλάστιμα μη-φέρ 🗸	Τοιχεία			
Είδος Κατανομής	Τριγωνική		 Κτίρια με μη-φέροντα στοιχεία από ψαθυρό Κτίρια με πλάστιμα μη-φέροντα στοιχεία 				
			Κτίρια χωρίς μη-φέροντα στοιχεία	1			

In the Building Properties field:

Where in previous versions there was the **Building Type** by X and Z field for the calculation of the basic eigenperiod, it has been replaced by the module:

Ιδιοπερίοδοι Κτιρίου Μέθοδος Υπολογισμού	X	Δύσκαμπτα χωρικά ηλαίσια από Σκυρόδεμα	~
ЕС8-1 пар. 4.3.3.2.2 (3)	⁄ Z	Δύσκαμπτα χωρικά πλαίσια από Σκυρόδεμα	\sim

There is now a choice of three ways to calculate the eigenperiod everywhere.

1	διοπερίοδοι Κτιρίου	
I	Μέθοδος Υπολογισμού	
	EC8-1 nap. 4.3.3.2.2 (3)	\sim
f	<mark>ΕC8-1 παρ. 4.3.3.2.2 (3)</mark> ΕC8-1 παρ. 4.3.3.2.2 (5) Ιδιομορφική Ανάλυση	

The first two are the approximate methods of EC8-1.

1. In the first EC8-1 nop. 4.3.3.2.2 (3) is necessary:

select, per direction, the type of building on the right

X	Δύσκαμπτα χωρικά πλαίσια από Σκυρόδεμα	~
z	Δύσκαμπτα χωρικά πλαίσια από Σκυρόδεμα	~

Δύσκαμπτα χωρικά μεταλλικά πλαίσια Δύσκαμπτα χωρικά πλαίσια από Σκυρόδεμα Μεταλλικά πλάισια με έκκεντρους συνδέσμους Κατασκευές από σκυρόδεμα ή φέρουσα τοιχοποιία με διατμητικά τοιχι Ολες οι άλλες κατασκευές

(in the case of X and/or Z where the structure consists of a single frame

A	Ανοίγματα						
x	ον3 🗌						
z	_ ενα						
		۱					

the corresponding checkbox in the "Openings" box is activated

The "Vesselscommand Torxzia is used to specify based on a minimum length which of the vertical elements are defined as "Vessels".

οοσδιορισμόα	; Τοιχείων EC_8 -	SBC301		>				
min Μήκος Στύλου (cm) >= 200								
Column	Element	Vy	Vz	hw ^				
1	1			0.0				
2	2			0.0				
3	3			0.0				
4	4			0.0				
5	5			0.0				
6	6			0.0				
7	7			0.0				
8	8			0.0				
9	9			0.0				
10	10			0.0				
 ≮				>				
Πρόσθεση Ολ	ων Καθάρισμα	Ολων	ОК	Cancel				

Enter the min Length (cm) and press the command "min Column Length" to automatically determine the walls per direction, so that the calculation of T1 is done according to par.4.3.3.2.2.

2. The second approximate method ^{EC8-1 nop. 4.3.3.2.2 (5)}, is sufficient to be selected and does not require any additional action.

3. The third possibility is to calculate the eigenpipes by Idiomorphic Analysis.

The program takes as the building's eigenvector per direction the eigenvector corresponding to the dominant eigenmode (the eigenmode with the highest percentage of activated mass).

The user can increase or decrease the number of Idiosyncrasies, in case of dynamic analysis, and Static, in case the user chooses to calculate the eigenvalues from Idiomorphic Analysis, and the accuracy rate.

-Δυναμική	Ανάλυσ	η		
Ιδιοτιμές	10	Ακρίβεια	0.001	CQC (10% $ \smallsetminus $
- Συντελεστ	rές Συμ	μετοχής Φά	ισματος Απ	CQC CQC (10%)
PFx	0	PFy	0 F	

It is also possible to choose the mode of overlap of the eigenmodal responses either according to the Full Quadratic Parallelism CQC and CQC(10%) rule (3.6 EAK), or the Simple Quadratic Parallelism SRSS rule.

Also, the results of the seismic action now include the results of the eigenmode analysis for the static scenarios.

												Σελίδα :
			ΔΕΔΟΜ	ENA	KAIANO	DTEA	ΕΣΜΑΤΑ Σ	ΕΙΣΙ	ΜΙΚΗΣ	ΔP	ΑΣΗΣ	
ΣΕΝΑΡΙ	10 :											
					ПАРАМ	TPO		MO	Y			
Κλάση Π	λαστιμ	ότητ	ας		-	DCM						
Τύπος Φά	σματο	IC I				Τύπο	ç 1					
Ζωνη Σει	σμικής	; ETTH	ανδυνότητας			11	-					
Επιτάχυνι	ση Βα	ρύτηι	oc q (m/sec	2)		9.810	0					
Σεισμική Ε	Ξπιτάχ	uvar	εδάφους ας	R		0.24	9.810 = 2.35	14		_		
Σύστημα κ	стріоц	кат	άX	-		Σύστη	μα Πλαισίων					
Σύστημα κ	стіріоц	кат	άZ			Σύστη	μα Πλαισίων					
Κατηγορία	αΕδά	φους				В						
Καρακτηρ	ιστικέ		ίοδοι Φάσμα	τος	-	TB=0	15 TC=0.50 T	D=2.	50(sec)			
Συντελεσι	rńc-Ka	τηγο	ρία Σπουδαι	ότητα	c	yi=1.0	000 - Σ2		. /			
Συντελεστ	τής Σει	σμικι	ής Συμπεριφο	οράς		qx=3	120 - gz=3.12	0 - a	y=1.500	_		
Συντελεστής Δασματικής Ενίσχυσης					Bo=2	.50	-	-	_			
Ποσοστό	κρίσιμ	nc a	πόσβεσης			£=5.0	00%					
and an		1,1		r		,	,	r		1	Ŧ /	
Στάθμ	nc	- 1	φομετρο	-	Διαστασε	ις και	τοψεων	2		\vdash	τυχηματικε	ς ΕΚΚ/ΤΕς
0	-15	-	(11)		LIX (III)	20	10,000		0.20		eux(m)	euz(m)
1			3.000		11.1	10	10.500	_	0.30		0.555	0.54
2			6 000		11.1	00	10.900		0.30		0.555	0.54
ΣΗΜΕΙΩΣ	E/Σ:	-		etix =	= 0.050 * L	lχ. ε	tiz = 0.050 * L	llz		_		
		_										
Διεύθυνα	n ly		ιοιοπεριοσ	DOI N				кот	11110 10		MALINE TO A	
771500040			The (non) -		0.4000	Dat	The state of the s	0000			ayleigh	
A			Tix (sec) =		0.1806	Rd(T) = 2.	2638			ayleigh	
Διεύθυνσ	η IIz		Tlx (sec) = Tllz (sec) =		0.1806	Rd(T) = 2. T) = 2. T) = 2.	2638			ayleigh	
Διεύθυνσ Διεύθυνσ	n IIz n y		TIx (sec) = TIIz (sec) = Tv (sec) =		0.1806 0.2135 0.0774	Rd(Rd(Rd(T) = 2. T) = 2. T) = 3.	2638 2638 5316			ayieigii	
Διεύθυνσ Διεύθυνσ	η IIz η y		TIx (sec) = TIIz (sec) = Tv (sec) = Kαθ'ú	ψος Μ	0.1806 0.2135 0.0774 Κατανομή	Rd(Rd(Rd(ZEIGH	T) = 2. T) = 2. T) = 3. Ικής Δύναμη	2638 2638 5316 5 (T é	μνουσα	Рот	ný)	
Διεύθυνσ Διεύθυνσ α/α	η IIz η y Ywó	u. -	TIx (sec) = TIIz (sec) = Tv (sec) = Καθ'ύι ΤΕΜΝΟΥ	ψος Μ ΣΕΣ Φ	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ	Rd(Rd(Rd(Rd(Σεισμ	T) = 2. T) = 2. T) = 3. ικής Δύναμη	2638 2638 5316 5 (Τέ ΣΤ	μνουσα ΡΕΠΤΙΚ	Ροπ ΕΣ Ρ	τή) 20ΠΕΣ (KNm)	
Διεύθυνσ Διεύθυνσ α/α Στάθμ.	τη IIz τη y Υψό (m)	μ. –	TIx (sec) = TIIz (sec) = Tv (sec) = Καθ'ύι ΤΕΜΝΟΥ: ΦΟΡΤ. 3-I (Kn)	ψος Μ	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ (Knl	Rd(Rd(Rd(Rd(Σεισμ	T) = 2. T) = 2. T) = 3. ικής Δύναμη ΦΟΡΤ.5-Ι Από maxez	2638 2638 5316 5 (Τέ ΣΤ	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. θ Από min	Pon EΣ F	τή) ² ΟΠΕΣ (KNm) ΦΟΡΤ. 7.1 Από maxex	ΦΟΡΤ. 8-I Aπó minex
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0	η liz η y Υψό (m)	μ. 1	TIx (sec) = TIIz (sec) = Tv (sec) = Kαθώ TEMNOY ΦΟΡΤ. 3.1 (Kn)	ψος Μ ΣΕΣ Φ	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn)	Rd(Rd(Rd(Σεισμ	T) = 2. T) = 2. T) = 3. Ικής Δύναμη. ΦΟΡΤ.5.1 Από maxez	2638 2638 5316 5 (Τέ ΣΤ 200	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Από min	Pon EΣ F	τή) 20ΠΕΣ (KNm) ΦΟΡΤ. 7-1 Από maxex	ΦΟΡΤ. 8-1 Από minex
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0	τη IIz τη y Υψό (m) 0.0 3.0	μ. 100	TIx (sec) = TIIz (sec) = Tv (sec) = Kaθώ TEMNOY: ΦΟΡΤ. 3.I (Kn) 0.1	ψος Κ ΣΕΣ Φ	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn)	Rd(Rd(Rd(Σεισμ Ν LII 0.000 2.865	T) = 2. T) = 2. T) = 2. T) = 3. ικής Δύναμη. ΦΟΡΤ.5.Ι Από maxez 0.00 116.0'	2638 2638 5316 5316 5 (Τέ ΣΤ 200	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. 6 Από min 0. -116.	Pon EΣ F ez 000	τή) ΦΟΠΕΣ (KNm) ΦΟΡΤ. 7-Ι Από maxex 0.000 118.140	ΦΟΡΤ. 8-I Από minex 0.001 -118.14
Διεύθυνο Διεύθυνο α/α Στάθμ. 0 1 2	τη IIz τη y Υψό (m) 0.0 3.0 6.0	μ. 1000 1000	TIx (sec) = Tilz (sec) = Tv (sec) = Kaθ'úr TEMNOY: ΦΟΡΤ, 3-I (Kn) 0.1 212: 196.	ψος Μ ΣΕΣ Φ 000 865 776	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn) 21 19	Rd(Rd(Rd(Σεισμ Ν LII 0.000 2.865 6.776	T) = 2. T) = 2. T) = 2. T) = 3. κής Δύναμη ΦΟΡΤ.5.1 Από maxez 0.00 116.0 [°] 107.2 ⁴	2638 2638 5316 5316 ΣΤ ΣΤ 200 11	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Από min 0. -116. -107.	Poπ EΣ F ez 000 011 243	τή) POΠΕΣ (KNm) ΦΟΡΤ. 7-Ι Από maxex 0.000 118.140 109.211	ΦΟΡΤ. 8-Ι Από minex 0.000 -118.14 -109.21
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2	η IIz η y Υψό (m) 0.0 3.0 6.0	μ. 100 100	Tix (sec) = Tilz (sec) = Tv (sec) = Kaθ'úr TEMNOY: ΦΟΡΤ. 3.I (Kn) 0. 212: 196.	ψος Μ ΣΕΣ Φ 000 865 776	0.1806 0.2135 0.0774 κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn) 21 19 Σύοδοι Κ1	Rd(Rd(Rd(Σεισμ Ν Ι-Π 0.000 2.865 6.776	T) = 2. T) = 2. T) = 2. T) = 3. κής Δύναμη ΦΟΡΤ.5.1 Από maxez 0.00 116.0° 107.24 απο Δυναμ	2638 2638 5316 5 (Τέ ΣΤ 200 11	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Δπό min -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	τή) POΠΕΣ (KNm) ΦΟΡΤ. 7.Ι Από maxex 0.000 118.140 109.211	ΦΟΡΤ. 8-Ι Από minex 0.001 -118.141 -109.21
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 α/α Ιδιομορο	τη ΙΙΖ τη γ Υψό (m) 0.0 3.0 6.0	μ. 00 00 κ	Tix (sec) = Tilz (sec) = Tv (sec) = Kaθ'ώ TEMNOY: ΦΟΡΤ. 3.1 (Kn) 0.1 212: 196: υκλική Συχ w (Rad/s	ψος κ ΣΕΣ Φ 000 865 776 ιοπερ νότητ sec)	0.1806 0.2135 0.0774 αστανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn) 21 19 pίοδοι Κτ	Rd(Rd(Rd(Rd(Σεισμ Ν Ν Δ.000 2.865 6.776 6.776 ν	T) = 2: T) = 2: T) = 3: κής Δύναμη ΦΟΡΤ.5.1 Από maxez 0.00 116.0° 107.24 το Δυναμ Συχνότητα Συχνότητα	2638 2638 5316 5316 5316 ΣΤ 11 13	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Από min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	τή) 20ΠΕΣ (KNm) ΦΟΡΤ. 7.Ι Από maxex 0.000 118.140 109.211 Περίοδος Τ (sec)	ΦΟΡΤ. 8-1 Από minex 0.001 -118.141 -109.21
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 2 Ιδιομορο	η IIz η y Υψό (m) 0.0 3.0 6.0 φής	μ. 000 000 K	Tix (sec) = Tilz (sec) = Tv (sec) = Kaθ'úr ΦΟΡΤ.3.1 ΦΟΡΤ.3.1 (Kn) 0.1 212: 196: Ιδη υκλική Συχ' w (Rad)s 2 9125E+	ψος κ ΣΕΣ Φ 000 865 776 Ιοπερ νότητ sec)	0.1806 0.2135 0.0774 κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤΙ. 4 (Kn) 21 19 ρίοδοι Κτ	Rd(Rd(Rd(Rd(Σεισμ Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν	T) = 2. T) = 2. T) = 2. T) = 3. κής Δύναμη. ΦΟΡΤ.5.1 Από maxez 0.00 116.0 107.24 απο Δυναμ Συχνότητα (Cycles/sec) (58315±4000	2638 2638 25316 5316 5316 ΣΤ 11 13	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Από min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rή) 20ΠΕΣ (KNm) ΦΟΡΤ, 7.1 Από maxex 0.000 118.140 109.211 Περίοδος Γ (sec) 2.1535-00	ΦΟΡΤ. 8.1 Από minex 0.001 -118.141 -109.21
Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 2 1 διομορο 1 2	η IIz η y Υψό (m) 0.0 3.0 6.0 ₽ής	µ. 000 000 К	Tix (sec) = Tiiz (sec) = Tv (sec) = Kaθ'ún 0.1 TEMNOY. ΦΟΡΤ. 3.1 (Kn) 0.1 212: 196: Ιδ Ιουκλική Συχ w (Rad/s 2.9425E+ 3.4784F+	ψος κ ΣΕΣ Φ 000 865 776 Ιοπερ νότητ sec)	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ.4 (Kn) 21 19 ρίοδοι Κ 1	Rd(Rd(Rd(Rd(Rd(Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν	1) = 2 1) = 2 1) = 2 1) = 3 πής Δύναμη ΦΟΡΤ.5.1 Ατό maxez 0.00 116.0 107.24 απο Δυναμ Συχνότητα (Cycles/sec) .6331E+000	2638 2638 5316 5316 5316 5316 5316 5316 5316 5316	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. 6 Από min 0. -116. -107. Ανάλυ	Pom EΣ F -1 ez 000 011 243	τή) ΟΠΕΣ (KNm) ΦΟΡΤ. 7-Ι Από maxex 0.000 118.140 109.211 Περίοδος T (sec) 2.1353E-00 1.8053E-00	ΦΟΡΤ. 8-Ι Από minex 0.000 -118.141 -109.21
Διεύθυνσ Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 2 1 διομορο 1 2 1 2 3	Υψό (m) 0.0 3.0 6.0 ₽ής	μ. 00 00 κ	Tix (sec) = Tilz (sec) = Tv (sec) = Kod*úr TEMNOY: ΦOPT.31 (Kn) 01 212: 196: 10 196: 10 29425E+ 3.4784E+ 4.5024F+	ψος κ ΣΕΣ Φ 0000 8865 776 ουτερ νότητ sec) 	0.1806 0.2135 0.0774 ατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ. 4 (Kn) 21 19 Σρίοδοι Κ1	Rd(μοτεγγίοτη Τ) = 2. Τ) = 2. Τ) = 3. ικής Δύναμη. ΦΟΡΤ.5.1 Από maxez 0.00 116.0° 107.24 Σαχνότητα (Cycles/sec) .6831E+000 :5361E+000 .5361E+000 :5361E+000	2638 2638 5316 5316 5316 5316 5316 5316 5316 5316	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. 6 Από min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rή) ΦΟΠΕΣ (KNm) ΦΟΡΤ. 7.Ι Από maxex 0.000 118.140 109.211 Περίοδος T (sec) 2.1353E-00 1.3955E-00 1.3955E-00	ΦΟΡΤ. 8-1 Από mines 0.00 -118.14 -109.21 11 11
Διεύθυνσ Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 1 1 2 2 1 διομορο 1 2 3 4	Υψό (m) 0.0 3.0 6.0 9 ής	μ. 00 00 00 κ	Thr (sec) = TIZ (sec) = TV (sec) = Tv (sec) = Kad'úr TEMNOY, ΦΟΡΤ, 3-I (Kn) 0.0 212:3 196: 150: W (Rad'£ 2.9425E+ 3.4784E+ 4.5024E+ 8.1143E+	ψος Κ ΣΕΣ 4 000 865 776 001 001 001 001	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤΙ, 4 (Kn) 21 19 ρίοδοι Κτ	Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(V V V 4 State 7	To = 2. T) = 2. T) = 2. T) = 3. Ixiy Δύναμη. ΦΟΡΤ.5.1 Από maxee 0.00 11610- 107.24 arto Δυναμ Συχνότητα (Cycles/sec) 6.631E+000 :5361E+000 :1657E+000 :2914E+001	2638 2638 5316 5316 5316 5316 5316 5316 5316 5316	μνουσα ΦΟΡΤ. (Δπό min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rή) ΦΟΡΤ. 7-Ι Από maxex 0.000 118.140 109.211 Περίοδος Γ (sec) 2.1535-00 1.8063E-00 1.8053E-00 7.7434E-00 7.7434E-00	ΦΟΡΤ. 8-Ι Από minex 0.00 -118.14 -109.21 11 11 11 12 2
Διεύθυνσ Διεύθυνσ Διεύθυνσ Στάθμ. 0 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 3 4 5	Υψό (m) 0.0 3.0 6.0 9 ής	μ. 000 000 κ	Tix (sec) = TiZ (sec) = Tv (sec) = Kaθ'úr TEMNOY: ΦΟΡΤ. 3.1 (Kn) 0.1 196: 1000000000000000000000000000000000000	ψος κ ψος κ ψος κ τοτεμ σττεμ σττεμ	0.1806 0.2135 0.0774 Κατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤΙΣΕΩ 40071.4 (Kn) 21 19 500501 Kτ	Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(Rd(N 1 N 1 N 1	μοτεγγίοι T) = 2. T) = 2. T) = 3. κής δώναμη ΦΟΡΤ.5.Ι Από maxez 0.000 116.0° 116.0° Σχυχότητα (Cycles/sec) 1.6831E+000 1.5361E+000 1.2914E+001 .4742E+001	2638 2638 5316 5316 5316 5316 5316 5316 5316 11 13 13	μνουσα PEΠΤΙΚ ΦΟΡΤ. (Από min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rij) 20ΠΕΣ (KNm) ΦΟΡΤ, 7.1 Από παχεχ 0.000 118,140 109,211 Περίοδος Τ (sec) 2.1535-00 1.8063Ξ-00 1.8063Ξ-00 1.8065Ξ-00 6.7323Ξ-00 6.7323Ξ-00	ΦΟΡΤ. 8-Ι Από minex 0.00 -118.14 -109.21 11 11 11 12 2
Διεύθυνο Διεύθυνο Διεύθυνο Στάθμ. 0 1 2 1 2 2 1 1 2 2 1 1 2 2 3 4 4 5 6	Υψό (m) 0.0 3.0 6.0 9 ής	µ. 000 000 к	Thr (sec) = TIIz (sec) = TV (sec) = Tv (sec) = Ke0*iv TEMNOY: ΦOPT, 3.1 (Kn) 0.01 212: 196: 100: VKNK1 Συχ w (Rad/s 2.9425£+ 3.4784£+ 4.5024£+ 8.1143£+ 9.2628£+ 9.5295£+	ψος κ ψος κ	0.1806 0.2135 0.0774 ατανομή ΦΟΡΤΙΣΕΩ ΦΟΡΤ.4 (Kn) 21 19 ρίοδοι Κτ	Rd(Rd(N N <	μοτεγγιστη T) = 2. T) = 2. T) = 2. T) = 3. κκίς Δύναμη ΦΟΡΤ.5.1 Από maxez 0.000 107.22 στο Δυναβ Συγνότητα (Cycles/sec) 6.6331E+000 .5361E+000 .1657E+0001 .2914E+001 .4742E+001 .5167E+001	2638 2638 5316 5316 5 (Τέ ΣΤ 11 13 μικη	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. (Διτό min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rtj) ΟΠΕΣ (KNm) ΦΟΡΓ. 74 Από maxes 0 000 118:40 109.211 Περίοδος 7 (sec) 2.1353E-00 1.8063E-00 1.3955E-00 7.7434E-00 7.7434E-00 6.5334E-00 6.5334E-00	ΦΟΡΤ. 8-Ι Από mines 0.00 -118:14 -109:21 11 11 11 12 22 2
Διεύθυνσ Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 0 1 1 2 3 4 4 5 6 6 7	Υψό (m) 0.0 3.0 6.0 9 ής	μ. 000 000 κ	Thr (sec) = Tilz (sec) = Tilz (sec) = Tilz (sec) = To (sec) = Kod*úr TEMNOY: ΦΟΡΤ. 3- (Kn) 0.0 212: 1966 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1925 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920	ψος κ ψος κ	0.1806 0.2135 0.0774 (ατανομή ΦΟΡΤι 4 ΦΟΡΤι 4 (Kn) 19 píoδοι Kτ α	Rd(Rd(N N	μοτεγγίοι Τ) = 2. Τ) = 2. Τ) = 3. ικής Δύναμη. ΦΟΡΤ.5.1 Ατό maxes 0.00 116.0° 107.24 ο στο Δυναβ δ631E+000 55361E+000 1.633E+001 5.5167E+001 6.6395E+001	2638 2638 5316 5316 5316 517 21 21 21 21 21 21 21 21 21 21 21 21 21	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. 6 Από min 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rň) POREZ (KNm) ΦΟΡΤ, 7.1 Από maxes 0.000 118.140 109.211 Περίσδος Γ (sec) 1.39355-0.0 1.39355-0.0 7.7434E-0.0 6.6935E-0.0 6.6935E-0.0	ΦΟΡΤ. 8.Ι Από minex 0.000 -118.14 -109.21 11 11 12 22 22
Διεύθυνσ Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 2 3 4 5 6 7 7 8	Υψό (m) 0.0 3.0 6.0 9 ής	μ. 000 000 κ	Thx (sec) = Tilz (sec) = Tilz (sec) = Tv (sec) = Kod'ux TEMNOY: ΦOPT. 3.1 ΦOPT. 3.1 (Ka) 0.1 212: 196: IO 2.9425E+ 3.4764E+ 9.2628E+ 9.2628E+ 9.2628E+ 9.3295E+ 1.030E+ 1.1183E+	ψος μ φος μ	0.1806 0.2135 0.0774 Caravoµi POPTIECC 400PT.4 (Kn) 211 19 pio5o1 KT ca	Rd(Rd(Rd(μοτεγγίοτη 1) = 2. 1) = 2. 1) = 2. 1) = 3. κής Δύναμη ΦΟΡΤ.51 Ατό σκανες 0.00 116 0' 1072 2' στο Δυναμ 2. νατο Δυναμ 1072 2' στο Δυναμ 2. νατο Δυναμ 3. νατο Δυμ 3.	2638 2638 5316 5316 517 21 21 21 21 21 21 21 21 21 21 21 21 21	μνουσα ΡΕΠΤΙΚ ΦΟΡΤ. 6 Από min 0, -116, -107. Ανάλυ	Pom EΣ F ez 000 011 243	rή) OΠΕΣ (KNm) ΦΟΡΤ. 74 Ατό παχω. 0.000 118.140 109.211 Περίδος Τ (sec) 2.1333-0. 1.805Ε-0. 1.805Ε-0. 6.7332E-0. 7.743E-0. 6.7332E-0. 7.743E-0. 7.744E-0. 7.745E-0. 7.755E-0. 7.755E-0. 7.755E-0. 7.755E-0. 7.755E-0. 7.755E-0. 7.755E-0. 7.755E-0.	ΦΟΡΤ. 8.1 Από minex 0.0000 -118.144 -109.21 11 11 12 22 12 12 22
Διεύθυνσ Διεύθυνσ Διεύθυνσ α/α Στάθμ. 0 1 2 1 διομορο 1 2 3 4 4 5 6 6 7 8 8 9	Υψό (m) 0.0 6.0 φής	μ. 000 000 000 κ	The (sec) = Tilz (sec) = Tilz (sec) = Tr (sec) = Tr (sec) = TEMNOY: ΦOPT.3. (Kn) 0.0 212:2 196: 100 212:2 2196: 101 2.9425E 3.4764E+ 4.5024E+ 9.2628E+ 9.2628E+ 9.5295E+ 1.183E+ 1.183E+ 1.1791E+	ψος μ ψος μ ΣΕΣ 4 000 865 776 001 002 002 002	0.1806 0.2135 0.0774 Garavoph ΦΟΡΤΙΣΕΩ ΦΟΡΤΙΣΕΩ ΦΟΡΤΙΔΕΩ Ι Ι 19 ΣΙ 19 ΣΙ 19 ΣΙ ΔΟ ΓΟ Γ Γ Γ Γ Γ Γ Γ Γ	Rd(Rd(Rd(μουτγγίοι 1) 2. 1) 2. 1) 2. 1) 2. 1) 3. κής Δύναμη ΦΟΡΤ.5.1 Από maxes 0.00 11672 κατό μαχες κατό μαχες 10702 κατό μαχες (Cycles/sec) 1637E+000 12944E+001 1.5167E+001 1.6395E+001 1.798E+001 1.798E+001 1.8766E+001	2638 2638 5316 Σ1 : 4 00 11 13 	μνουσα PEΠΤΙΚ ΦΟΡΤ. (Από mini 0. -116. -107. Ανάλυ	Pom EΣ F ez 000 011 243	rή) OΠΕΣ (KNm) ΦΟΡΤ, 7.1 Ατό maxex 0 000 118:400 109.211 Περίοδος Τ (sec) 2:1353:=0.2 1:3955:-0.0 1:8955:-0.0 5:5324:E-0.0 6:5934:E-0.0 5:5324:E-0.0 5:3268:-0	ΦΟΡΤ. 8-1 Από minex 0.000 -118.144 -109.21 11 11 12 22 22 12 22 12 12

							Σελίδα : 2	
α/α		Διευθύν	σεις στο Κύριο	Σύστη	ια Συντεταγμένα	ωv		
Ιδιομορφής	Κατά	x	Κατά Ζ			Κατά Υ		
1	6.0413E	+000	2.1684E-001			-9.9684E+000		
2	-1.0473E	+001	-1.7020E-001		-6.6643E+000			
3	3.0024E+000		-6.3262E-00)2		-3.3579E+00	0	
4	9.8379E-001		-1.1186E+0	01		3.9841E-001	1	
5	1.3118E	+000	5.3215E+0	00		6.7177E-00	1	
6	-4.9495E	-001	-3.1233E+0	00		9.4501E-001	1	
7	-1.6260E	-001	3.1368E+0	00		1.1630E+00	0	
8	-3.2081E	-002	1.7227E+0	00		1.0451E-00	1	
9	-1.2099E	+000	-1.4001E+0	00		-1.3492E-001	1	
10	1.0238E	-001	-3.3525E-00	01		-4.0357E+00	0	
	Συ	ντελεστές Συμ	μετοχής Μαζα	ών ανά	ί Διεύθυνση			
Κατά λ	X = 1.0		Κατά Υ =	1.0	K	ατά Z =	1.0	
2	Δρώσες Ιδιομ	ορφικές Μάζε	5	Συν	ολική Μάζα -	180.949	(kN/gr)	
α/α			METAOOPI	ΚΕΣ	MAZES			
Ιδιομορφής	Κατά Χ	%	Κατά Υ		%	Κατά Ζ	%	
1	36.50	20.17	0.05		0.03	99.37	54.92	
2	109.68	60.61	0.03		0.02	44.41	24.54	
3	9.01	4.98	0.00		0.00	11.28	6.23	
4	0.97	0.53	125.13		69.15	0.16	0.09	
5	1.72	0.95	28.32		15.65	0.45	0.25	
6	0.24	0.14	9.75		5.39	0.89	0.49	
7	0.03	0.01	9.84		5.44	1.35	0.75	
8	0.00	0.00	2.97		1.64	0.01	0.01	
9	1.46	0.81	1.96		1.08	0.02	0.01	
10	0.01	0.01	0.11		0.06	16.29	9.00	
ΣΥΝΟΛΑ:	159.62	88.21	178.17		98.46	174.23	96.29	
Πίνακας Τιμώ	ον Φάσματος	Απόκρισης Ετ	τιταχύνσεων	Αριθ	μός Σημείων =	39		
α/α Σημ	υοίαι	Περία	οδος		τιμές	ΦΑΣΜΑΤΟΣ		
Εισαγυ	υγής	(se	ic)		Τιμή χ	Τιμή γ	Τιμή Ζ	
1		0.0	00		1.88	1.41	1.88	
2		0.0	05		2.01	3.53	2.01	
3		0.1	10		2.14	3.53	2.14	
4		0.1	15		2.26	3.53	2.26	
5		0.3	20		2.26	2.65	2.26	
6		0.1	25		2.26	2.12	2.26	
7		0.3	30		2.26	1.77	2.26	
8		0.3	35		2.26 1.		2.26	
9		0.4	10		2.26	1.32	2.26	
10		0.4	15		2.26	1.18	2.26	
11		0.5	50		2.26	1.06	2.26	
12		0.4	55		2.06	0.96	2.06	
13	2	0.6	50		1.89	0.88	1.89	
14		0.6	55		1.74 0.81		1.74	
15	1	0.1	70		1.62	0.76	1.62	
16		0.1	75		1.51	0.71	1.51	
17		0.8	30		1.41	0.66	1.41	
18		0.8	35		1.33	0.62	1.33	
19		0.9	90		1.26	0.59	1.26	
20		0.9	15		1 19	0.56	1 19	

To modify the coefficients for the Eccentricities, select the corresponding checkbox and enter the new value on the right.

In the same way, the designer can modify the spectra by X, Y and Z by entering his own values in the corresponding fields,

Sd (T) Sd (TX)	1
Sd (TY)	1
Sd (TZ)	1

as well as the Response Spectrum Participation Factors

Συντελεστές Συμμετοχής Φάσματος Απόκρισ	ης	
		ΔΙΕΥΘΥΝΣΗ Χ
		Ολες οι άλλες περιπτώσεις 🗸 🗸
In the Slots field, select for each dire the specific study and that is defined	ction the case that is appropriate fc I by the EPC.	Βαθμιαίες με αξονική συμμετρία Μία εσοχή χαμηλότερη του 0.15H Μία εσοχή γυήλότερη του 0.15H Βαθμιαίες χωρίς αξονική συμμετρία Ολες οι άλλες περιπτώσεις
	Χ Ολες οι άλλες περιπτώσεις	
	Ζ Ολες οι άλλες περιπτώσεις	
		OK
Είδος Κατανομής Τριγωνική	In addition, the research	er can choose the
	Τοινωνική	
Type Distribution of seismic force be	tween	

EXAMPLE The CANOPE key is used when in the Upper Eigenmodes Influence Check of paragraph 5.7.2 (b) of CAN.EPE. described in detail in the chapter "§ Upper Eigenmodes Influence Check".

ΚΡΙΤΗΡΙΑ ΑΠΑΛΛΑΓΗΣ ΣΤΑΤΙΚΗΣ ΕΠΑΡΚΕΙΑΣ

For the criteria for exemption from the structural

adequacy test for existing buildings, see:

"Criteria for exemption from the structural adequacy inspection of existing buildings, according Government Gazette 350/17-2-2016", p. 25.

1.S6.§ How to calculate the seismic coefficient q

The selection of the "Seismic Coefficient q" and the "Type of Construction" requires complex calculations.

SCADAPro gives the scholar the possibility to get rid of them. So, fill in all the

q qx	3.5 qy	3.5	qz 🗌 3	.5	
and					
Τů	πος Κατασκεύης				
x	Σύστημα Πλ	λαισίων	Z	Σύστημα Πλαισίων	

as they are.

Select "OK" and with "Automatic Process" perform a first analysis.

Υπολογισμός Σεισμικών Δράσεων - Ανάλυση - Ελεγχοι										
Παράμετροι	Παράμετροι Κέντρα Μάζας (cm)									
Αυτόματη Διαδικασία	Level	Х	Y	Z	^					
Μάζες-Ακαμψίες	0 - 0.00	0.00	0.00	0.00	-					
🖌 Κανονικότητα	2 - 600.00	1377.28	600.00	1139.98						
κανονικο Σε κάτοψη	3 - 900.00 4 - 1200.00	1391.58 1340.11	900.00 1200.00	1131.47 1114.94	-					
					-					
Ανάλυση					~					
Ενημέρωση Δεδομένων Εξοδος										

Select the "Checks" command and in the dialog box that appears select "OK".

min Μήκος Στύλοι	u (cm) >= 200		Γωνιακή Παραμόρφ	ωση γορ 0.005			
you set the m	inimum length th	at a post must have to be	min Μήκος Στύλου ((cm) >= 200			
considered	a wall. By pre	essing the key	Column Element	Vy Vz ^			
min Μήκος Στύλου	(cm) >=		1 1				
in the list of po	les, the walls are a	automatically checked in each	3 3				
direction.			4 4				
			5 5				
In addition, by a	ctivating the check	boxes	6 6 7 7				
Διερεύνηση επάρκει	ιας τοιχωμάτων (nv)		8 8				
Δημιουργία Αρχείου συνδυσσμούς (com)	υ Εντατικών από bin_txt)		9 9				
you indicate the	creation of the cor	responding tyt files which are	10 10				
automatically re	gistered in the stu	dy folder and can be printed	Πρόσθεση Ολων Καθάρισμα Ολων Ορια Μαζών - Ακαιιωιών				
automatically re	gistered in the star	ay folder and can be printed.	Μάζες	Ακαμψίες			
The wall adequa	acv investigation ir	ncludes a detailed analysis for	Μείωση 0.5	Μείωση 0.5			
each level and fo	or each combinatio	on of the cutting force received	Αύξηση 0.35	Αύξηση 0.35			
by each wall.		C	Διερεύνηση επάρκε	ειας τοιχωμάτων <mark>(</mark> nv)			
			Δημιουργία Αρχείοι συνδυασμούς (com	υ Εντατικών από bin.txt)			
			ОК	Cancel			
Ορια Μαζών - Ακα	μψιών	In the limits field, and due t	to the fact that	t no specific			
Μάζες	Ακαμψίες	limits are defined by the E	urocode (unlike	e the NAC)			
Μείωση 0.5	Μείωση 0.5	you can modify the mass an	d stiffness limit	ts.			
·							

In the check file and in the calculation of the wall shear, the program "determines" the structural system of the building based on the seismic wall shear check.

														Σελί	δα : 1
				Α	пот	ελεΣι	MAT	٢A	ΕΛΕΓ	ΧΩΝ					
ΣΕΝΑΡΙΟ	0:	۵	YNAMIK	(Η ΦΑΣ	EMATI	KH ME	ЭΟΔ	0Σ	ME O	νοΣημα	ΣΤΡΕ	ITTIKA ZEN	үгн	(EC8)	
	Έλ	εγχος Ι	Διαφορ	άς Μο	αζών ι	και Ακ	αµψ	ıŵı	ν Σταθ	μών Κτι	ρίου			§4.	2.3.3.
α/α Στάθμης	Σι Υψ	υν/κο ός (m)	Συν.Μά KN/g	ζα	Συνολικες Ακαμψιες Διαφορές Μαζών - Ki*10^3 (KNm) (Mi+1-Mi)/Mi - (Ki					· Ακαμψιων i+1-Ki)/Ki					
					(Ki-X) (Ki-Z) (ΔMi) (ΔKi-)					(ΔKi-X)		(ΔKi	-Z)		
2	6	.450	145.64	3	641.85	52	11	67.3	328						
3	9	.800	95.23	7	352.62	25	11	01.0	021	ελ. Ο.	34	ελ. 0.45		ελ. Ο	.05
Ο Έλεγχος ικανοποιεί τα Κριτήρια Κανονικότητας									~	/					
			MáZec	ЦЛ	ψEngn	ποόπο		03	5 HE) átturan	TOÉTO	0.00			
ΣΗΜΕΙΩΣΕ	ΣΗΜΕΙΩΣΕΙΣ: Μαζες Η Αύζηση πρεπει <= 0.35 - Η Ελαπωση πρεπει <= 0.50 Ακαμψίες : Η Αύξηση πρέπει <= 0.35 - Η Ελάπωση πρέπει <= 0.50														
Κέντρο Βάρους - Κέντρο Ακαμψίας															
α/α Συν/κο Κέντρο Βάρους Κέντρο Ακαμψίας									ις	Τ	Απόστα	ση			
Στάθμης	Yu	ψός (m)	Χ Συντ.(m) Ζ Συντ.(m)				Χ Συν	т.(m)	Z	Συντ.(m)	ł	K.B - K.A	(m)		
1		3.400	0.0	000		0.0000			0.00	000		0.0000	0.0000		
2		6.450	8.5	5735		6.2752			8.54	36	4	4.5478		1.727	7
3		9.800	10.	7763		6.0379			10.6	790		3.8335		2.2065	
		Σε	ισμική	Τέμνο	ουσα΄	Τοιχω	μάτι	ων						§	5.1.2.
		Σεισμικί	ή Τέμνο	υσα Το	οιχωμό	ίτων	-			Στά	ίθμη Α	ναφοράς		1 3.4	00(m)
ala	Συνδ	Τέμνου	ισα Τοιχ./	Συνολικ	κή Τέμν.	= nvx	F	17	Συνδ	Τέμνου	σα Τοι;	(./Συνολική Τ	έμν.	= nvz	ED /
Στάθμης	/μος	Τ έμνα Τοιχωμ	ουσα ιάτων	Συνο) Τέμνο	λική ουσα	nvx		ň.	/μος	Τέμνο Τοιχωμ	υσα άτων	Συνολικ Τέμνουσ	ιή σα	nvz	АΠ.
1	19	565.	588	1207.	.626	0.47	A	٦.	37	889.2	203	1746.43	2	0.51	EΠ.
2 ***	3	0.0	00	328.1	108	0.00	A	Π.	40	141.6	603	330.614	4	0.43	АΠ.
3	3	0.0	00	159.3	321	0.00	A	٦.	57	34.9	55	102.51	3	0.34	АΠ.
ΣΗΜΕΙΩΣΕ	EIΣ:	*** = Στό	ιθμη ελέ	γχου η	ν από	κανονια	σμó	_							
		Καθ	θορισμ	ός Συα	στήμο	ι <mark>τος Κ</mark> ι	ripíc	DU							
Διεύθυνση	X:	Σύσ	τημα Πλ	αισίων											
Διεύθυνση	Z:	Мікт	τό Σύστη	μα με Ιο	σοδύν	αμα Πλο	αίσια								

Knowing the "Construction Type" and all the previous parameters , the program can calculate the "Seismic Coefficient q".

Enter the last information in the parameters, i.e. the "Construction Type", run the analysis for the second time and enter the parameter dialog box once again.

OBSERVATION:

Where the building type includes the word "walls"

ΔΙΕΥΘΥΝΣΗ Χ
Μικτό Σύστημα με Ισοδύναμα Τοιχεία 🛛 🗸
Σύστημα Πλαισίων Μικτό Σύστημα με Ισοδύναμα Πλαίσια Μικτό Σύστημα με Ισοδύναμα Τοιχεία Πλάστιμο Σύστημα Συζευγμένων Τοιχειων Πλάστιμο Σύστημα μη Συζευγμένων Τοιχειων Σύστημα μεγάλων, ελαφρώς οπλισμένων Τοι Σύστημα Ανεστραμμένου Εκκρεμούς Στρεπτικά Εύκαμπο Σύστημα
OK Cancel

then to calculate the coefficient $\alpha 0$ and ultimately q you should select the "Tunnelscommand

to define, based on a minimum length, which of the vertical elements are defined as "Tunnels".

min Μήκος	Στύχου (cm) >=	200		
Column	Element	Vy	Vz	hw
1	1			0.0
2	2			0.0
3	3			0.0
4	4			0.0
5	5			0.0
6	6			0.0
7	7			0.0
8	8			0.0
9	9			0.0
10	10			0.0
<				>

Enter the min Length (cm) and press the "min Column Length" command automatically determine the walls per direction to calculate the coefficient $\alpha 0$.

In the "q" field you read the values suggested by the program.

You can proceed by keeping these values or modify them by checking the corresponding checkboxes and typing your own values (which you could have done from the beginning, but then the program would receive your values without suggesting its own).

Select		Ενημ	έρωση	Φάσματ	гоς	to be informed	the spectrum with the values of the
`ooff	iciont	a and	Φάα	τμα Από	кріот	to see it	Seismic
ούσια 4	πόκοιση		VITELIN				
Puopu P	(itokptor)	ς Επιτοχο	vocuv		3	~	
A/A	T(s	RdTx	RdTy	RdTz	^		
1	0.000	1.570	1.099	1.570			
2	0.050	1.345	1.334	1.345			
3	0.100	1.121	1.570	1.121			
4	0.150	1.121	1.570	1.121			
5	0.200	1.121	1.570	1.121			
6	0.250	1.121	1.570	1.121	_		
7	0.300	1.121	1.570	1.121	_		
8	0.350	1.121	1.570	1.121	_		
9	0.400	1.121	1.570	1.121	_		
10	0.450	1.036	1.451	1.036	~		
Def	ault	Write	TXT	ОК			
Dear	TXT			Canad	.1		

Select "OK" and with "Automatic Process" run the analysis a second time take the new parameters into account.

OBSERVATION:

▲ For **metal**, **composite** or **load-bearing masonry** structures the procedure is the same. The only difference can be found in the definition of the "Construction Type" (which also affects the "Construction Type") which is very simply identified by the form of the construction without the help of the .txt file. The user selects the type from the start and continues as before in the search for "q".

1.Σ6.§ Control of earthquake victims

The bottom part of the window that opens is about the earthquake victims:

Ελεγχος Σεισ	μοπλήκτων					
Κατηγορία κτιρίων	Ι 🗸 🗌 Περίοδο	ος κατασ	EAK	???		
Συντελεστής σεισμι	κής επιβαρύνσεως	0	a*/g	0	Υπολογισμός Φά	ισματος

(Official Gazette, No. 455, 25/02/20)

No 1455/CF8

Definition of minimum mandatory requirements for the preparation of rehabilitation studies for reinforced concrete buildings damaged by earthquakes and the issuance of the relevant repair permits.

NOTE:

The Characterization of Earthquake Damage that concerns existing buildings, is done with the order of same name found in the Elastic and Inelastic analysis scenarios of EC8, where the minimum mandatory requirements for the preparation of rehabilitation studies of reinforced concrete buildings damaged by earthquake and issuance of the relevant repair permits are defined. See Inv. Use 8B. Analysis

Then you define the "Category of buildings" according to the F.E.K. where two categories of existing earthquake-affected reinforced concrete buildings (I, II) are distinguished, depending on the method of seismic calculation with which they were designed.

Туре	Συντελεστής σεισμικής επιβαρ	ύνσεως 0.04			
and pr	ess Υπολογισμός Φάσματος	to automatically calculate	a*/g	0.09	according Table 3 and

Πίνακας 3. Τιμές Οριζόντιας Επιτάχυνσης Σχεδιασμού *α*/g* (ανηγμένη στην επιτάχυνση της βαρύτητας g) Κτιρίων Κατηγορίας ΚΙ.

		Ζώνη Σι	εισμικής Επι	κινδυνότητα	5: I (EAK20	003)			
Συντε	ελεστής Σεισμ	ικής Επιβαρ	ύνσεως ε	0.04	0.06	0.08	0.12	0.16	
(Avtic	σεισμικος και	νονισμος 19:	9/84-85)						
a^*/g	Σπουδαιότη	τα Κτιρίου: Σ	I& ΣII	0.09	0.11	0.14	0.21	0.28	
,	Σπουδαιότη	τα Κτιρίου: Σ	III & ΣIV	0.12	0.16	0.21	0.32	0.34	
		Ζώνη Σε	ασμικής Επιι	κινδυνότητας	;: II (EAK2	003)			
Συντε (Αντι	ελεστής Σεισμ σεισμικός Καν	ιικής Επιβαρ νονισμός 195	ύνσεως ε 59/84-85)	≤0	.06	0.08	0.12	0.16	
	Σπουδαιότη	τα Κτιρίου: Σ	Ι & ΣΙΙ	0.	14	0.14	0.21	0.28	
a"/g	Σπουδαιότη	τα Κτιρίου: Σ	III & ΣΙV	0.	18	0.21	0.32	0.34	
_		Ζώνη Σε	ισμικής Επικ	ανδυνότητας	: III (EAK2	2003)			
Συντε (Αντι	- ελεστής Σεισμ σεισμικός Καν	ιικής Επιβαρ νονισμός 19	ύνσεως ε 59/84-85)		≤0.08		0.12	0.16	
	Σπουδαιότη	τα Κτιρίου: Σ	Ι & ΣΙΙ		0.21		0.21	0.28	
a*/g	Σπουδαιότη	τα Κτιρίου: Σ	ΞΙΙΙ & ΣΙV		0.28		0.32	0.34	
A/A	T(s	RdTx	RdTy	RdTz	^		$\overline{}$		
A/A	1(5	KUIX	Ruly	KU12					
2	0.000	1.766	1.230	1.766					
3	0.100	1.766	1.236	1	_				
4	0.150	1.766	1.236	1.766	— ļ				
5	0.200	1.766	1.236	1.766					
6	0.250	1.766	1.236	1.766					
7	0.300	1.766	1.236	1.766					
8	0.350	1.766	1.236	1.766					
9	0.400	1.766	1.236	1.766					
10	0.450	1.766	1.236	1.766	~				
De	fault	Write	ТХТ	ОК					
Rea	d TXT			Cano	el				
	Ελεγχος Σ	εισμοπλήκτ	των						
Κατηγ	γορία κτιρίω	v I v	Περίο	δος κατασ	κευής πρ	iv to 198	5	EAK	???
Συντ	ελεστής σει	σμικής επιβ	Βαρύνσεως	, 0.04	a*/g	0.09	Yno	λογισμός	Φάσματος

See "§ Earthquake victims - F.E.C., No. No. 455, 25/02/20"

1.Σ6.§Spectrumacceleration spectrum for the
designdesignrepair of earthquake - fire damaged buildings

You have the option to apply GGC455/25-2-14 and GGC2775/18-12-15 and automatically calculate the acceleration range for the design of earthquake and fire damaged building repairs. The 2 GGCs are identical and the difference between them concerns the definition of the Characterisation of buildings depending on the influence of the damage.

 For the Earthquake Affected Buildings Government Gazette 455/25-2-14 the determination of the Characterization is made according to the

loss of load-bearing capacity (Af) and the time studied, the buildings are classified as follows:

ΚΤΙΡΙΑ ΜΕ ΒΛΑΒΕΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΣΠΟΥΔΑΙΟΤΗΤΑΣ (ΤΟΠΙΚΟΥ ΧΑΡΑΚΤΗΡΑ)	$A\phi \leq 0,12$
ΚΤΙΡΙΑ ΜΕ ΒΛΑΒΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΕΝ ΓΕΝΕΙ ΤΗΝ ΑΣΦΑΛΕΙΑ ΤΟΥ ΚΤΙΡΙΟΥ (ΓΕΝΙΚΟΥ ΧΑΡΑΚΤΗΡΑ)	Αφ > 0,12

• While for the fire-affected buildings, the classification of the damage (i.e. affect or not the general stability of the building) is determined on the basis of the abovementioned

description and number of damages estimated and proposed by the designer.

Depending on the choice of the analysis scenario, either linear or non-linear analysis, you can define the acceleration range for earthquake and fire affected buildings through the corresponding parameters.

🗹 Ελεγχος Σεισμοπλήκτων - Πυροπλήκτων									
Κατηγορία κτιρίων	EAK	???							
Συντελεστής σεισι	Υπολογισμός Φά	σματος							

Select the analysis scenario and open the parameters

rito	λογισμος Ζεισμ	ικων Δρασεων	- Αναλυση - Ελεγ	χοι						
	Παράμετροι	Κέντρα Μάζας (cm)	¥						
	reek_Elas	tic, with	Method m	n or q	ЕС8 × Пара́цетроі ЕС8 - Риз	_Greek	_Elast	ic		
Σεισμική Περιοχή Σεισμικός Περιοχ Ζώνη Ι ~ a 0. Σπουδαιότητα Ζώνη Π ~ V ¹ Φάσμα Απόκρισης ζ(%) 5	Χαρακτηριστικές Πε Τύπος Φάσματας Φάσμα Απόκρισης Επιτασ 1 0 1236 0.1 2 0 1236 1.1 3 0 1235 1.1 4 0 1245 1.2 5 0 1245 0.2 6 0 1245 0.2 8 0 1245 0.2 8 0 1245 0.2 9 0 1245 0.2	Op/Övrie Karokóp. (v)votzev Try RdTz ^ H0 1.286 09 1.215 09 1.315 09 1.315 09 1.345 1	Enindo X2 eseguary(z nr. osc. Kátra: 0:-0.00: Are	yµµrýς δύναµης S - 1500.00 ∨ C CQC ∨ Andκρισης PFz 0 T, T, 1 T, 1 T, 1 T, 1 T, 1 T, 1 T, 1	Σοσμική Περιοχή Σεισμικής Περιοχή Ζείνη Ι · · · · · · · · · · · · · · · · · ·	Χορακτηριστικέ Τύπος Φάσιμα Φάσμα Απόκρισης Ε Α/Α Τ(RdT» 1 0 1.766 2 0 1.766 3 0 1.766 6 0 1.766 6 0 1.766 8 0 1.766 8 0 1.766 9 0 1.766	c Tiepiošo mec Delčkov Tittavajvivačkov k RdTy RdT2 5 1.236 1.766 5 1.236 1.766		Enindo XZ	S - 1500.00 α την στάθμη CQC Ληδκρισης PF2 0 X) 1
Φόσμο Απόκρισης Είδος Σκυρόδεμο Τύπος Κατασκεύης Χ Σύστημκ Μέθοδος Υπολογισμ ΕC8-1 παρ. 4.3.3.2 Οριο Σχετικής Μετακλ	10 0 1.345 0.1 11 0 1.345 0.1 Defoult Write Read TXT Read TXT Lineycoc Σεοιριονής Ramonia Ziverzkeartic συσμικής και ησης ορφφου 0.005	194 1.345 103 1.345 ТХТ ОК Сапсе! Періобос катаоксийс пр Періобос катаоксийс пр Періобос катаоксийс пр Періобос катаоксийс пр Сапсе! Характрефис	hr to 1985 EAK 777 Ø Ynaloyogidç Φidguareç Taqçala KANERE Defe	sç nepirtûdesç sç nepirtûdesç v ult OK Cancel	Федара Алберлопу; Ідаприкої συνδυσοροї У Ріх «К. Fiz У. «К. Fiz У.» У.» У.» У.» У.» Оставля (Ход Доставля Ход	10 0 1.766 11 0 1.766 Default 1 1 Read TXT Ελεγχος Σειορ Κατηγορία κτρίων 2 Συντελεστής σεισμια 2		OK Cancel rtuov katooksuh(; np a*/g	ν το 1985 ΕΛΚ 777 Υτολογουμός Φάσματος Στάθμη Αξιοποτής Ιμάρομτον Ιμάρομτον	 γ) 1 1 ες Τοιχοπληρώσεικ λάμδα (%) 0 μους του κτιρίου υς διάτμησης LS ε κάθε βήμα κα)
Οριο Σχετικής Μετακλ Είδος Κατανομής	ησης ορόφου 0.005 Τρηιωνική	Χαρακτηρισμός Σεισμοπλήκτων	Tergelo KANERE Defa	UIT OK Cancel	Default Xaj	ρακτηρισμός ο σμοπλήκτων	K Cancel	ΦΑΣΜΑΤΑ	Στάθμη Αξιοπιστίας Δεδομένων Ελεγχος Επιρροών 2ος Τάξης	на)

• For the earthquake victims:

Preceded by Zeiguon Ańkrow where Table 1 (Fault description and Reduction Factors R Reduction Factors R Element Capacity)

Πίνακας 1. Περιγραφή βλαβών και Συντελεστές Μείωσης R Φέρουσας Ικανότητας Στοιχείων.

				R				Ī										
	DEDICDAM	ΥΠΟΣΤΥ	ΛΩΜΑΤΑ	TOIX	MATA	ко	MBOI											
(βλέπε σχήμα 1)	ΒΛΑΒΗΣ	КТІРІА МЕТА ТО 1995	КТІРІА ПРІМ АПО 1985	KTIPIA META TO 1995	КТІРІА ПРІN АПО 1985	KTIPIA META TO 1995	КТІРІА ПРІN АПО 1985	Г2	λοξές ρωγμές > 3mm	0,30	0,20	0,15	0,05					
A	απλές καμπτικές ρωγμές ≤ 2mm	1,00 (0,70°)	0,90 (0,60*)	0,90 (0,70*)	0,80 (0,60*)				απώλεα υλικού, κα- μπτικές ρωγμές, λυ-		_	_		_				
<mark>Β1 (</mark> α)	πολλαπλές καμπτικές ρ ωγμές $\leq 2mm$	1,00 (0,70°)	0,90 (0,60*)	0,80 (0,70*)	0,70 (0,60°)		EN	Δ	γισμος ραρδων σπλι- σμού, μετακίνηση άκρων > 2%	0,15	°		Ů	0				
<mark>Β1 (</mark> β)	πολλαπλές καμπτικές ρωγμές μεταξύ 2mm<≤5mm	0,90 (0,70°)	0,80 (0,60°)	0,70	0,60	OPIZ	ZETAI	E1	αριζόνται ολίσθηση στη βάση,θέση πάκτωσης τοιχώματος με ρωγμή ≤ 4mm και μετακίνηση 0,60 0,50						EN			
B1 (y)	πολλαπλές καμπτικές $\rho \omega \gamma \mu \hat{\epsilon} \varsigma > 5 mm$	0,80 (0,70°)	0,70 (0,60*)	0,60	0,50				άκρων ≤ 10mm οριζόντια ολίσθηση στ	η βάση/θέση π	ιάκτωσης			OP	ZETAI			
Β2 (α)	λοξές ρωγμές ≤ 1mm	0,90 (0,70°)	0,80 (0,60*)	0,70	0,60			E2	10χωματος με ρωγμη < 4mm και μεταιάνηση 0,40 0,30 άκρων > 10mm									
Β2 (β)	λοξές ρωγμέ μεταξύ 1mm<≤2mm	0,80 (0,70°)	0,70 (0,60°)	0,55	0,45	0,30	0,20	 Οι τιμές ε υπερκάλυψ των ράβδων 	ντός παρένθεσης εφαρμ η άκρων, και συνοδεύον ν και ελαφρά αποφλοίωσ	ιόζονται όταν ο παι εκτός από η (δηλ. απόστι	οι βλάβες αμφ τις περιγραφ ιαση τμήματος	ανίζονται σε τ όμενες βλάβες επικάλυψης σ	τεριοχές ματία ; και από ρηγι κυροδέματος).	χές ματίσματος οπλισμών με από ρηγμάτωση κατά μήκος διέματος).				
B2 (Y)	λοξές ρωγμές μεταξύ 2mm<≤3mm	0,60	0,50	0,40	0,30			 Η τυχίν βλάξη κάχθου χαρακτηρίζει τα κατιακόρυφα στοιχεία του αυντρέχουν σε αυτό. Ως βλάξιε στους κύμβους νοούνται μόνο οι εντός του σώματος του κάμβου. Τσίχωμα θκωράται κατιακόρυφο στοιχείο με λόγο πλευρών δατομής (μεγαλύτερη τηρος μεκρότερη 										
Γ1 (α)	καμπτικές ρωγμές, λυγισμός ράβδων οπλισμού, μετακίνη- ση άκρων ≤ 2%	0,50	0,40	0,30	0,20	0,20	0,10	 ο η που του πασαρα (4). 4. Για κτίρια ενδιάμειοου έτους κατασκευής γίνεται γραμμική παρεμβολή επί των τιμών του Πίνακα 5. Η χρήση των τιμών του πίνακα 1 γίνεται αποκλειστικά και μόνο προς εφαρμογή της σχάσης: 										
Γ1 (β)	λοξές δισδιαγώνιες ρ ωγμές \leq 3 mm	0,40	0,30	0,20	0,10	İ		Αφ-1										

X	Χαρακτηρισμός ανάλογα με την επιρροή των βλαβών Χ								
	Етс	ος Κατα	σκευής	. 1970 min Μήκος Στι	ύλου (cm) 0	???			
	L	Na	Ele	Περιγραφή βλάβης	Βλάβη στον Κόμ Μ	<mark>Λά Ri</mark>			
	1	1	1	Β1(β) Πολλαπλές καμπτικ 💌	B1(β) Πολλαπ 💌 🖡	• 0.60			
	1	2	2	Δ Απώλεια υλικού,καμπτι 💌	Δ Απώλεια υλ 💌 🖡	• 0.00			
	1	3	3	Β2(γ) Λοξές ρωγμές μετα 💌	Γ1(β) Λοξές δι 🗾	0.30			
	1	4	4	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 [0.70			
	1	5	5	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 [0.70			
	1	6	6	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 🛛	0.70			
	1	7	7	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 🗍	0.70			
	1	8	8	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 [0.70			
	1	9	9	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 [0.50			
	1	10	10	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 🗍	0.70			
	1	11	11	Β1(γ) Πολλαπλές καμπτικ 💌	B2(α) Λοξές ρ 💌 🗍	0.70			
	<				1	>			
[Leve	1 ΣRi=	=5.300	Σn=14 Αφ=0.62143 > 0.12 Δεν Ικαν	οποιείτ.	Υπολογισμός			
	Level 2 ΣRi=14.000 Σn=14 Αφ=0.00000 <= 0.12 Ικανοποιείται Level 3 ΣRi=14.000 Σn=14 Αφ=0.00000 <= 0.12 Ικανοποιείται								
	Level 4 ΣRI=11.000 Σn=11 Αφ=0.00000 <= 0.12 Ικανοποιείται Level 5 ΣRI=11.000 Σn=11 Αφ=0.00000 <= 0.12 Ικανοποιείται Μηδενισμός								
						ОК			
l	Cancel								

from which the requirement to prepare rehabilitation studies has been derived (i.e. where Af>0,12)

and

- for the fire victims

with damage affecting the general safety of the building (of a general nature)

> select diama Anokpianc to set the range.

The bottom part of the window that opens is about the earthquake-affected fire victims:

Ελεγχος Σεισ	τμοπλήκτων - Πυροπλήκτω	v			
Κατηγορία κτιρίων	Ι 🗸 🗌 Περίοδος κατ	ασκευής π	ріv то 1985	EAK	???
Συντελεστής σεισι	ιικής επιβαρύνσεως 0	a*/g	0	Υπολογισμός Φά	σματος

in case the designer wants to take into account in the pushover a spectrum other than EC8-1. Paragraph 5.7.4.2 of the EIA Code states that the spectrum used is that of EC8. The program by default uses this spectrum.

If the designer wants to take into account the spectrum of earthquake-fire victims, he/she checks the option "Check Earthquake-Fire Victims" and the program takes into account this spectrum or any other spectrum entered "manually" in the table of values. Also when the earthquake-firefatality spectrum is selected, it prints only the one targeted for performance level B.

The Objective for the Assessment and Design of the load-bearing structure of reinforced concrete buildings is a combination of:

of a Performance Level: a "Significant Damage" (B) level is defined for all cases,

of a Seismic Action (design earthquake): according to the CATEGORY (KI, KII) of the building.

To check the earthquake-fire victims, first activate the corresponding checkbox Ελεγχος Σεισμοπλήκτων - Πυροπλήκτων

Then you define the "Category of buildings" according to the Government Gazette 455/25-2-14 or Government Gazette 2775/18-12-15 where two categories of existing earthquake-affected-fire-affected buildings made of reinforced concrete (I, II) are distinguished, depending on the method of seismic calculation with which they were designed.

ΚΑΤΗΓΟΡΙΑ ΚΙ επανυπολογισμός του φέροντος οργανισμού του κτιρίου σύμφ Σ.Ε. "Β" και Σεισμός Σχεδιασμού:	ωνα με τον ΚΑΝ	.ЕПЕ.,		St	SC	AI Iral A	DA nalysi	Pro tm is & Design
	, ,	βαρύητας g) Κτιρίων Κατηγορίε	iç Ki.	g (un)//pc	ang sanga sa			1
- Υιοθετουνται 4 Κατηγοριες Σπουδαιοτητας (ΣΙ,ΣΙΙ,ΣΙΙΙ,ΣΙV) σ	υμφωνα με	Ζώνη Σεισμικής Ε	τικινδυνότητα	ç I (EAK2)	003)	1	1	
τον <i>Πιν.1</i> του ΦΕΚ και τη σημερινή τους χρήση.		(Αντισεισμικός Κανονισμός 1959/84-85)	0.04	0.06	0.08	0.12	0.16	1. 1. 1.
		α'/g	0.09	0.11	0.14	0.21	0.28	
		Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.12	0.16	0.21	0.32	0.34	2-1-5
σενάριο: EC8 Greek Ελαστική, με Μέθοδο m ή g)	Ις	Συντελεστής Σεισμικής Επιβαρύνσεως ε (Αντισεισμικός Κανονισμός 1959/84-85)	s o	ç II (EAA2	0.08	0.12	0.16	
Δαμβάνεται:		α'/σ	0.	0.14		0.21	0.28	
		Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.	18	0.21	0.32	0.34	State M
- το φασμά του 2χ.1 του ΨΕΚ		Ζώνη Σοσμικής Ε	πκινδυνότητας	;: III (EAK2	2003)	1	1	
 οι τιμές <u>Οριζ. επιταχ</u>. σχεδ. α*/g από τον Πιν.2(3) βάσει ΕΑΚ 	2003	(Αντιστισμικός Κανονισμός 1959/84-85)		≤0.08		0.12	0.16	
		a*/g		0.21		0.21	0.28	128 B
Π Σε περίπτωση εφαρμομής Mn Γραμμικών Μεθόδων Αμά	lugne	Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV		0.28	10.00*	0.32	0.34	1. new
22 περιπτωση εφαρμογής τοτη τραμμικών το εσοσών Ανα	λυσης	An and the second				45	14.5	18
(σενάριο: EC8_Greek_Ανελαστική)		A State State State	Ρόσμα Απόκρισι	ης Επιταχύν	vacuov			Tx + 0.1
Λαμβάνεται και πάλι από το <i>Σχ.1</i> και ο <i>Πιν.2(3)</i> αλλά με: K=1.0 και Sd(T) * 1.5 για κτίρια της περιόδου μετά 1985 Sd(T) * 2 για κτίρια της περιόδου πριν 1985		$S_{k}(T) = \begin{cases} a^{*}, \ 0 \le T \le 12 \sec \\ a^{*}(\frac{12}{2})^{k}, \ T > 1.2 \sec \\ \sin a k = 2/3 \end{cases}$	A/A T(s 1 0.000 2 0.050 3 0.100 4 0.150 5 0.200 6 0.250 7 0.300 8 0.350 9 0.400 10 0.450 Default	RdTx 1.619 1.619 1.619 1.619 1.619 1.619 1.619 1.619 1.619 1.619 1.619	RdTy 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133	RdT2 / 1.619 / 0.611 / 0.61	×	Res - 1 Inst - 0 Res - 1 Inst - 0 Res - 0
 2.1.3 Κατακόρυφη Συνιστώσα Σεισμικής δράσης Τρόπος υπολογισμού Περιπτώσεις 	00 04 0.0 12 15 20 24 23 32 1 [Jose] Τμήμα 1 Ογιζόποι Φάομο Επιτηχίνετων Κτιρίων Καιτηγορίος Κζ	16 40 Σχοδοσιμού Γραμμικών Μαθόδων Ανάλκτος	Read TXT Ελαγχορι Κατηγορία κτρί Συντελεστής σ	Σοσμοτιλήστ ων Ι < σσμικής επβ	nuv - Ruponi Propioło kapiwotawa	Cancel Mycruw Ic Konsekow 0.06 a*)ç аріv то 19 %р (0.11	85 χ.ας 3 Υτολογιαμός Φάαμα

i. For buildings of category KI:

set the "Seismic Load Factor e" used for the design of the building, for the calculation of the Horizontal Design Acceleration a*/g according to Table 3 or 2 respectively (they are the same

with differential numbering) and select the command

Γένακας 3. Τμές Οριζόντιας Επιτάχωσης Σχεδιασμού σ'/g (σκηγμένη στην επιτάχωση της βαρύτητας g) Κτιρίων Κατηγορίας ΚΙ.								 Τιμές Οριζόντιας Επιτάχυνσης Σχεδ βαρύτητας g) Κπρίων Κατηγορίας Κ 	ίασμού a*/ξ α.	g (ανηγμέ	νη στην επ	πάχυνση τ	ης			
Ζώνη Σεισμικής Επικινδυνότητας: Ι (ΕΑΚ2003)								Ζώνη Σεισμικής Επικινδυνότητας: Ι (ΕΑΚ2003)								
Συντελεστής Σεισμικής Επιβαρύνσεως ε (Αντισεισμικός Κανονισμός 1959/84-85) 0.04 0.06 0.08 0.12 0.16					Συντελεστής Σεισμικής Επιβαρύνσεως ε (Ανπσεισμικός Κανονισμός 1959/84-85) 0.04 0.06 0.0						0.16					
Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ	0.09	0.11	0.14	0.21	0.28		*/-	Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ	0.09	0.11	0.14	0.21	0.28			
Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.12	0.16	0.21	0.32	0.34		a /g	Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.12	0.16	0.21	0.32	0.34			
Ζώνη Σεισμικής Επικινδυνότητας: ΙΙ (ΕΑΚ2003)							Ζώνη Σεισμικής Επικινδυνότητας: ΙΙ (ΕΑΚ2003)									
ντελεστής Σεισμικής Επιβαρύνσεως ε ντισεισμικός Κανονισμός 1959/84-85) ≤0.06 0.08 0.12 0.16				0.16		Συντελεστής Σεισμικής Επιβαρύνσεως ε (Αντισεισμικός Κανονισμός 1959/84-85) ≤ 0.06 0.				0.08	0.12	0.16				
Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ	0.	14	0.14	0.21	0.28		• /	Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ	0.14		0.14	0.21	0.28			
Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.	18	0.21	0.32	0.34		^α / 8 Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV 0.18 0.21 0.32 0.34									
Ζώνη Σεισμικής Επικ	ινδυνότητας	;: III (EAK2	2003)					Ζώνη Σεισμικής Επικι	ινδυνότητας	: III (EAK2	003)					
τελεστής Σεισμικής Επιβαρύνσεως ε πσεισμικός Κανονισμός 1959/84-85)		≤ 0.08		0.12	0.16		Συντι (Αντι	ελεστής Σεισμικής Επιβαρύνσεως ε σεισμικός Κανονισμός 1959/84-85)		≤0.08		0.12	0.16			
α'/g Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ 0.21 0.21 0.28 Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV 0.28 0.32 0.34			•/-	Σπουδαιότητα Κτιρίου: ΣΙ & ΣΙΙ		0.21		0.21	0.28							
			a /g	Σπουδαιότητα Κτιρίου: ΣΙΙΙ & ΣΙV	0.28			0.32	0.34							
	 ος 3. Τωές Ορζόντιος Επιτάχωνσης Στράσυκης Ζώνη Σεισμικής Επιτβαρύνσεως ε ποτεισμικός Κανονισμός 1959/84-85) Σπουδαιότητα Κηρίου: Σ1 & Σ1 					$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c } \hline Γ transformed by the set of	Line Constraint Constraint<	Inverse 2. Trude Opičerso Trude Opičerso Trude Opičerso Zúvn Zziopuský Emisouvá ortyg (sonyušen) orsy zanadujích orsy zanadujích z trudy von treženik Strudy Von Strudy Von Strudy Von Strudy Von Strudy Strudy Von Von Von Strudy Von	Line Quark Control Contrelectico Control Contrelation Control Control Control	Line Quickmase Entractiourung Excelleration of the length of the le	Invariance 3. Track Optifiering Emit Systematic Emit Systematic Systematic Systematic Emit Systemateremit Systematic Emit Systematic Emit Sys	Instruction Sector of the formation of the formatic formation of the formatic formatic formati			

In buildings designed and/or constructed before 26/02/1959 as well as in buildings without a building permit, either partially or in their entirety, the seismic load factor e will be considered as the factor that should have been taken into account according to the Seismic Regulation of 1959, depending on the seismicity of the area (I, II, III) and the risk of the ground (a, b, c).

In case of application of non-linear methods of analysis, as provided for in the C.E.P.E., a horizontal elastic acceleration spectrum Se (T) shall be used, which shall be derived from the above-mentioned horizontal design spectrum Sd (T) (Figure 2 and Table 3) by setting k= to 1.0 and multiplying the values of the squares of the Sd (T) spectrum by a factor of 1.50 for buildings of the period ...< 1985 and by a factor of 2.00 for buildings of the period 1985 < ... < 1995, respectively.

For this reason, if non-linear analysis methods are applied, check the Γ Περίοδος κατασκευής πρίν το 1985 checkbox on pre-1985 buildings.

ii. For buildings of category KII:

In the case of buildings of category KI as design spectrum and elastic spectrum, both for the horizontal components and for the vertical component of the action, the spectra as presented in the respective NEAK & EAK, taking into account all the assumptions that were taken into account during the design phase of the fire-affected - earthquake-affected building...

Choosing category II activates the button of the EAC, while the fields related to category I are deactivated accordingly

🗹 Ελεγχος Σεισ	μоп)	λήκτων - Πυροπ	ιλήκτων				
Κατηγορία κτιρίων	Π	~ Περίοδ	ος κατασ	σκευής π	ріv то 1985	EAK	???
Συντελεστής σεισμ	ιικής	επιβαρύνσεως	0	a*/g	0	Υπολογισμός Φά	σματος

 \blacksquare to open the window of the parameters you need to set to calculate the

design spectrum.							
Παράμετροι Απλοποιημένης Φασμ	ατικής Μεθόδου						
Σεισμική Περιοχή Σεισμικές Περιοχές	Χαρακτηριστικές Περίοδοι 😓 Σπουδαιότητα Εδαφος Τ1 0.1 Ζώνη Σ2 🗸						
Ζώνη Ι · · a 0.16	A V T2 0.4 Yi 1						
Συντελεστές	Eninεδa XZ						
θ 1 βο 2.5 qx 3.5	Κάτω 0 - 0.00 Υψόμετρο στο 0.8"Η						
ζ(%) 5 n 1 qz 3.5	Ανω 5 - 1500.00 ~ 4 - 1200.00 ~						
Екккутрóтηтες Тиχηματικές е тіχ □ 0.05 *Lx е е тіх □ 0.05 *Lz е	οδύναμες Στατικές f. foi 1.5 *eox e nd 0.5 *eox f. fzi 1.5 *eoz e rzi 0.5 *eoz						
Rd (T) Rd (TX) 0 Rd (1	TY) 0 Rd (TZ) 0						
Γωνία Κυρίων Επιπέδων Κάμψης Γωνία α 🔲 0 (+) Αρισ	στερόστροφα () Δεξιόστροφα						
Default Λεπτομέρειες							
КРІТНРІА АПАЛЛАГНУ УТАТІКНУ ЕПАРКЕТАУ ОК Cancel							

EAK

Select

After you have set the parameters, press OK. The configuration window closes and you select

Υπολογισμός Φάσματος

After calculating the spectrum, follow the procedure of analysis, elastic or non-elastic as explained in the previous chapters.

Results

The commands in the "Results" field are very different whether they are Elastic Analysis scenarios or Inelastic Analysis scenarios.

2.1 Combinations

SCADA Pro includes all the files of combinations for all Static and Dynamic scenarios of Elastic Analyses and Inelastic Analyses, as "Predefined Combinations".

Name	Date modified	Туре	Size
eak-dyn.cmb	23/3/2010 1:27 µµ	CMB File	55 KB
eak-dyn-et.cmb	11/1/2010 5:12 µµ	CMB File	48 KB
eak-static.cmb	11/1/2010 5:11 µµ	CMB File	53 KB
Ec8-dyn.cmb	23/3/2010 1:22 µµ	CMB File	48 KB
Ec8-dyn-cypr.cmb	23/3/2010 1:22 µµ	CMB File	48 KB
Ec8-PushOver.cmb	13/5/2013 11:44 πμ	CMB File	7 KB
Ec8-static.cmb	23/3/2010 1:21 µµ	CMB File	53 KB
Ec8-static-cypr.cmb	23/3/2010 1:21 µµ	CMB File	53 KB
📄 ita-dyn.cmb	23/3/2010 1:09 µµ	CMB File	48 KB
📄 itaEc8-dyn.cmb	23/3/2010 1:18 µµ	CMB File	48 KB
itaEc8-static.cmb	23/3/2010 3:12 µµ	CMB File	53 KB
ita-static.cmb	23/3/2010 1:06 µµ	CMB File	53 KB
pal-static.cmb	27/2/2018 11:35 πμ	CMB File	3 KB
sbc-000.cmb	5/5/2017 4 :35 μμ	CMB File	91 KB
sbc-001.cmb	5/5/2017 4 :35 μμ	CMB File	91 KB
sbc-002.cmb	5/5/2017 4:15 μμ	CMB File	91 KB
sbc-003.cmb	5/5/2017 4:25 μμ	CMB File	91 KB

The predefined combinations refer to seismic scenarios. To create combinations of scenarios that do not contain an earthquake, both automatic and manual modes are available.

After running a seismic analysis scenario, its combinations are automatically generated by the program. By calling the command "Combinations" the table with the combinations of the active seismic scenario is opened.

The same is achieved by selecting the "Predefined Combinations" command, as the program will enter the combinations related to the active scenario of the seismic

Seismic E.A.K. (Static) Ενεργό Σενάριο

analysis

The predefined combinations of the "running" seismic scenarios of the analysis are automatically entered by the program.

2.1.Σ1 Combinations of Seismic Elastic Analysis Scenarios Seismic / EC-8 and Static type

Scenario			×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanceo Multi-Thre	d eaded Solver
🗌 Ακύρωση	Ονομα		
Seismic E.A.K. (Static) (0) EC-8 Greek Static (1)	Ανάλυση	EC-8_Gr	reek 🗸 🗸
EC8_Italia Static (2) EC8_Cyprus Static (3) EC8_Austrian Static (4)	Τύπος Ιδιότητες	Static	~
EC8_General Static (5) EC-8_Greek Ελαστική Static (6)	Μέλη	1	Κόμβοι
	Φορτίσ	εις	Μάζες
	Nέo		Ενημέρωση
	Εκτέλεσι	η ολων το	ων αναλύσεων
		Εξοδα	ος

With the Static scenario active and therefore the simplified spectral method,

Press the Combinations command to open the combinations window to create the combinations of the simplified spectral method loadings (9 loadings) that will be needed for the EAK or EC8 checks (depending on the active scenario) for sizing:

υνδυασμοί Σετ	Φορτίσεων	2							>
γG 1.35	γE 1	YGE 1	ψ2	0.3	Αστα	οχιας γG+γQ+Σγψ0Q	Λειτουργικοτητας ✓ ΣG+Q+Σψ0Q	Υπολογια	σμός
γQ 1.5	γE0.3 0.3			Ανεμος - Χι	ονι Σ	G+ψ1Q+Σψ2Q G+E+Σγψ2Q	ΣG+ψ1Q+Σψ2 ΣG+Σψ2Q	Q Διαγραφή	Ολων
	Είδος	Διεύθυνση	LC1	LC2	LC3	LC4	LC5	LC6	LC ^
Σενάριο			Seismic E 🗵	Seismic E	 Seismic E 	. 🔄 Seismic E	Seismic E	🖞 Seismic E 👱	Sei
Φόρτιση			1	2	3	4	5	6	7
Τύπος			G 💌	Q	Ex	▼ Ez	Erx .	Erx 💌	Erz
Δράσεις			_	Κατηγορία	-	<u>-</u>	<u> </u>	· -	
Περιγραφή									
									—
Συνδ.:1	Αστοχίας	Οχι 💌	1.35	1.50					
Συνδ.:2	Αστοχίας 💽	Οχι 💌	1.00	0.50					
Συνδ.:3	Αστοχίας 💽	Κατά + Χ 💌	1.00	0.30	1.00	0.30	1.00		0.3
Συνδ.:4	Αστοχίας 💽	Κατά + Χ 💌	1.00	0.30	1.00	0.30	1.00		0.3
Συνδ.:5	Αστοχίας 💽	Κατά + Χ 💌	1.00	0.30	1.00	-0.30	1.00		-0.
Συνδ.:6	Αστοχίας 💽	Κατά + Χ 💌	1.00	0.30	1.00	-0.30	1.00		-0.
Συνδ.:7	Αστοχίας 💽	Κατά - Χ 💌	1.00	0.30	-1.00	0.30	-1.00		0.3
Συνδ.:8	Αστοχίας 💽	Κατά - Χ 💌	1.00	0.30	-1.00	0.30	-1.00		0.3
Συνδ.:9	Αστοχίας 💽	Κατά - Χ 🔄 💌	1.00	0.30	-1.00	-0.30	-1.00		-0.
Συνδ.:10	Αστοχίας	Κατά - Χ 💌	1.00	0.30	-1.00	-0.30	-1.00		-0.
Συνδ.:11	Αστοχίας	Κατά + Χ 💌	1.00	0.30	1.00	0.30	1.00		
Συνδ.:12	Αστοχίας	Κατά + Χ 💌	1.00	0.30	1.00	0.30	1.00		
<			*		1	i	i	1	>
Προσθήκη	Αφαίρεση	Διάβασ	μα Καταχώρησ	η ΤΧΤ	Προκαθορια	τμένοι Συνδυασμοί		OK Ca	ncel

The table with the combinations of the active seismic scenario opens.

The same is achieved by selecting the "Predefined Combinations" command, as program will enter the combinations related to the active scenario of the seismic

	Seismic E.A	.K. (Static)														
analysis	΄ Ενερ	òγó	Σενάριο														
	LC1		LC2		LC3		LC4		LC5		LC6		LC7		LC8	L	.C ^
Σενάριο	Seismic E	•	Seismic E	•	Seismic E	•	Seismic E	•	Seismic E	•	Seismic E	•	Seismic E	•	Seismic E 🗵	s	iei 🗌
Φόρτιση	1		2		3		4		5		6		7		8	9)
Τύπος	G	•	Q	•	Ex	•	Ez	•	Erx	•	Erx .	•	Erz .	•	Erz 💌	E	y
Δράσεις		•	Κατηγορία	•		•		•		•		•		•	<u>-</u>		
Περιγραφή																	
	LC1		LC2		LC3		LC4		LC5		LC6		LC7		LC8	l	.c ^
Σενάριο	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree 💌	E	C
Φόρτιση	1		2		3		4		5		6		7		8	9)
Τύπος	G	•	Q	•	Ex	•	Ez	•	Erx	•	Erx	•	Erz .	•	Erz 💌	E	y
Δράσεις		•	Κατηγορία	•		•		•		•		•		•	-		
Περιγραφή																	

For the scenarios of the simplified spectral method 9 loadings are taken (columns

LC1-LC9)(Permanent, Mobile and 7

Seismic). The series include

Script: the name of the active script Charge:

the number of the charge

Type: the type of charging Κατηγορία Β:Ι ραφεία Κατηγορία C:Χώροι α Κατηγορία D:Καταστ Κατηγορία E:Χώροι A Κατηγορία E:Χώροι A Κατηγορία F:Βάρος< Κατηγορία H:Στέγες I Χιόνι 1000m <h (0.70<="" th=""><th>G Q Ex Ez Ey EzD EzD EzD ErZD ErZD ErZD ErZD ErZD ErZD ErZD CrZD CrZD CrZD CrZD CrZD CrZD CrZD C</th><th>(type Null for charging other than predefined, e.g. Wind, Snow)</th></h>	G Q Ex Ez Ey EzD EzD EzD ErZD ErZD ErZD ErZD ErZD ErZD ErZD CrZD CrZD CrZD CrZD CrZD CrZD CrZD C	(type Null for charging other than predefined, e.g. Wind, Snow)
Κατηγορία Η:Στέγες Χιόνι 1000m<Η (0.70 Χιόνι Η<=1000m (0.5 Ανεμος (0.60, 0.20, 0 Αctions: Θερμοκρασία (0.60,	(0.00,0.00,0.00) , 0.50,0.20) 0,0.20,0.00) 0.00) 0.50,0.00)	depending on the category and charge

2.1.Σ2 Combinations of Seismic Elastic Analysis Scenarios Seismic/EC-8 and Dynamic Type

Scenario				\times
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Threa	aded Solver	
Ακύρωση	Ονομα			
Seismic E.A.K. (Dynamic-eri) (0) EC-8 Greek Dynamic (1)	Ανάλυση	EC-8_Gre	eek	\sim
EC8_Italia Dynamic (2) EC8_Cyprus Dynamic (3) EC8_Austrian Dynamic (4)	Τύπος Ιδιότητες	Dynamic		~
EC8_General Dynamic (5) EC-8_Greek Ελοστική Dynamic	Μέλι	ı	Κόμβοι	
	Φορτία	εις	Μάζες	
	Nέo		Ενημέρωστ	ו
	Εκτέλεσ	η ολων τα	ον αναλύσεω	v
		Εξοδο	ς	

With the Dynamic scenario active and therefore the spectral method,

Press the Combinations command to open the combinations window, to create the combinations of spectral method loadings (7 loadings, due to the absolute values) that will be needed for the EAK or EC8 checks (depending on the active scenario) and for sizing:

/G	1.35	γE 1		γGE	1	4	12	0.3		Αστοχί ΣγΟ	ας 3+γ	/Q+Σγψ0Q	∧a ⊡	ειτουργικότητα]ΣG+Q+Σψ0C]ΣC +w10 +Σw	ις 2 • 2Ο	Υπολογ	γισμ	JộĊ
Q	1.5	γE0.3 0.3	3					Ανεμος - Χι	IOVI	2G	+Ε+	ις +2φ2ς +Σγψ2Q	È]2G+Σψ2Q)2Q	Διαγραφ	ήC	Ολω
		Είδος		Διεύθυνση		LC1		LC2		LC3		LC4		LC5		LC6		LC
Σενάρ	ю					Seismic E	•	Seismic E	•	Seismic E	•	Seismic E	-	Seismic E	•	Seismic E	-	Sei
Φόρτ	ιση					1		2		3		4		5		6		5
Τύπο	ς					G	•	Q.	•	ExD	•	EzD	•	Erx	•	Erz	-	Eyl
Δράσ	εις						•	Κατηγορία	•		•		•		•		-	
Περιγ	ραφή																	
													4					
Συνδ.	:1	Αστοχίας	-	Οχι	•	1.35		1.50									+	
Συνδ.	:2	Αστοχίας	-	Οχι	•	1.00		0.50					1				-	
Συνδ.	:3	Αστοχίας	-	Κατά +Χ	Ŧ	1.00		0.30		1.00		0.30	1	1.00		0.30		0.3
Συνδ.	:4	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		1.00		0.30		-0.
Συνδ.	:5	Αστοχίας	-	Κατά +Χ	Ŧ	1.00		0.30		1.00		0.30		1.00		-0.30		0.3
Συνδ.	:6	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		1.00		-0.30		-0.
Συνδ.	:7	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		-1.00		0.30		0.3
Συνδ.	:8	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		-1.00		0.30		-0.
Συνδ.	:9	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		-1.00		-0.30		0.3
Συνδ.	:10	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		0.30		-1.00		-0.30		-0.
Συνδ.	:11	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		-0.30		1.00		-0.30		0.3
Συνδ.	:12	Αστοχίας	-	Κατά +Χ	•	1.00		0.30		1.00		-0.30		1.00		-0.30		-0.
<																		>
-	-04	Amelana			_				_				_					

The table with the combinations of the active seismic scenario opens.

The same is achieved by selecting the command "Predefined Combinations", as the program will enter the combinations that relate to the active scenario of the seismic analysis .

Seismic E.A.K.(Dynamic-eti) (0)	-
΄ Ενεργό Σενάριο	

	LC1		LC2		LC3		LC4		LC5		LC6		LC7	
Σενάριο	Seismic E	•	Seismic E	Ŧ	Seismic E	•	Seismic E	-						
Φόρτιση	1		2		3		4		5		6		5	
Τύπος	G	•	Q	•	ExD	•	EzD	•	Erx	•	Erz	•	EyD	-
Δράσεις		•	Κατηγορία	•		•		•		Ŧ		•		-
Περιγραφή														

	LC1		LC2		LC3		LC4		LC5		LC6		LC7	
Σενάριο	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	•	EC-8_Gree	Ŧ	EC-8_Gree	•	EC-8_Gree	-
Φόρτιση	1		2		3		4		5		6		5	
Τύπος	G	•	Q	•	ExD	•	EzD	•	Erx	Ŧ	Erz	•	EyD	-
Δράσεις		•	Κατηγορία	•		•		•		Ŧ		•		-
Περιγραφή														

For the spectral method scenarios 7 loadings (columns LC1-LC7) (Permanent, Mobile and 5 Seismic) are obtained.

Dynamic combinations and loadings

Load 3 earthquake X: from the out of the dynamic is load 3 Load 4 earthquake Z: from the out of the dynamic load 4 Load 5 moment X: from the out of the static is load 5 (+, -) Load 6 moment Z: from the out of the static is load 6 (+, -) Load 7 earthquake Y: from the out of the dynamic is load 5

2.1.Σ3 Combinations of Seismic Elastic Seismic and Type Old seismic analysis scenarios

Scenario		×
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Threaded Solver
Ακύρωση	Ονομα	
Seismic Παλαιός 1959-84 (0) Seismic Παλαιός 1984-93 (1)	Ανάλυση	Seismic 🗸
	Τύπος Ιδιότητες	Παλαιός 1959-84 🛛 🗸
:	Μέλι	Κόμβοι
	Φορτία	τεις Μάζες
	Nέo	Ενημέρωση
	Εκτέλεσ	η ολων των αναλύσεων
		Εξοδος

With the scenario Seismic Old active,

Press the Combinations command to open the combinations window, to create the combinations of the Old Rules loadings (4 loadings) that will be needed for the checks as well as for sizing:

/G 1.35 /Q 1.5	γE γE0.3	1).3	γGE	1	Ψ	2	0.3 Ανεμος - Χι	IOVI	Αστοχίας ΣγG+ ΣG+ψ ΣG+E	/Q+Σγψ0Q 1Q+Σψ2Q +Σγψ2Q		επουργικοτητα 2 ΣG +Q +Σψ0Q 2 ΣG +ψ 1Q +Σψ 2 G +Σψ2Q	ς ! 2Q	Υπολογισ Διαγραφή	τμός Ολωι
	Είδος		Διεύθυνση		LC1		LC2	l	.C3	LC4		LC5		LC6	LC
Σενάριο					Seismic Πα	•	Seismic Πα	- 9	Seismic Πα 🚬	Seismic Πα	•	Seismic Πα	•	Seismic Πα 💌	Sei
Φόρτιση					1		2	3	}	4		0		0	0
Τύπος					G	•	Q	- 6	x 🗾	Ez	•	G	•	G 🗾	G
Δράσεις						•	Κατηγορία	•	-		•		•	<u> </u>	
Περιγραφή															
								+							
Συνδ.:1	Αστοχίας	-	Οχι	-	1.00		1.00								
Συνδ.:2	Αστοχίας	-	Κατά +Χ	-	1.00		1.00	1	1.00						
Συνδ.:3	Αστοχίας	•	Κατά -Χ	•	1.00		1.00	-	1.00						
Συνδ.:4	Αστοχίας	-	Κατά +Ζ	•	1.00		1.00			1.00					
Συνδ.:5	Αστοχίας	-	Κατά -Ζ	-	1.00		1.00			-1.00					
Συνδ.:6		-		-											
Συνδ.:7		-		•											
Συνδ.:8		-		•											
Συνδ.:9		-		-											
Συνδ.:10		-		-											
Συνδ.:11		-		-											
Συνδ.:12		-		-											
<					i .										>

The table with the combinations of the active seismic scenario opens.

The same is achieved by selecting the "Predefined Combinations" command, as the program will enter the combinations related to the active scenario of the seismic analysis.

For the Old Rules scenarios 4 loadings (columns LC1-LC7) (Permanent, Mobile and 2 Seismic) are taken.

2.1 Combinations for Wind - Snow

In addition to the predefined combinations, the designer has the possibility to create his own combination files, either by modifying the predefined ones, or by deleting all of them "Delete All" and entering his own values. The "Load Set Combinations" tool works like an Excel page offering copy, total delete capabilities in the classic ways, Ctrl+C, Ctrl+V, Shift and right-click.

The predefined combinations refer to seismic scenarios. To create combinations of scenarios that do not contain an earthquake, both automatic and manual modes are available.

The automatic mode assumes that the automatic procedure for the calculation and distribution of wind and snow loads, the automatic generation of loads and scenarios (see Chapter 6) has been carried out beforehand.

αράμ	έ ετροι Β	Επεξεργασία Εμφάνιση Αντιστο	η οιχία Απ	οτελέσματα	ΑΓ	IOTE/ στίων	\ΕΣΜ <i>Ι</i>	ATA -	ΑΠΟΔΟ	οφ Ηζ	ρτιων	1
-		👻 👻 μελω	JV		Ανεμος	0	90	180	270	Xióvi		_
		Φορτία Ανέμου - Χιονιού	ć		Cno. n+Cni	3	7	11	15		Типіка	Τυχη-
					cpe_p+cpi	Ľ			10		_	parino
					Cpe_p-Cpi	4	8	12	16	Case i	19	22
		Ορισμός Φόρτισης		×	Cpe n+Cpi	5	9	13	17	Case ii	20	23
						6	10	14	18		21	24
Ιδια	ν Βάρο	ς Μόνιμα Φορτία	~	Εισαγωγή	Cpe_n-Cpi	Ľ	10	14	10	Case	21	24
4 5 6	Οχι Οχι Οχι	Ανεμος 0 Cpe_p-Cpi Ανεμος 0 Cpe_n-Cpi Ανεμος 0 Cpe_n+Cpi Ανεμος 0 Cpe_n-Cpi		Διαγραφή	Σενάρια		Stat	tic Ανεμα	ος Ο (: 🗸		Апотε	\έσματα
7 <	Οχι	Ανεμος 90 Cpe_p+Cpi	>	ОК	 Ανεμος 9 Ανεμος 1 	0 80	Stat	tic Ανεμα tic Ανεμα	ος90 Υ ος18(Υ			
					Ανεμος 2	70	Stat	tic Ανεμα	ος 27(🗸			
					🗸 Χιόνι Τυπ	ικό	Stat	tic Xıóvı	Типік 🗸			
					🗌 Χιόνι Τυχ	ηματικό	Nέo	Σενάρια	• •			
					Δημι	ουργία Σ	Σεναρίων	Ανάλυσ	ης			Cancel

Subject to the above conditions, it is possible to create the wind and snow combinations

Ανεμος - Χιονι

automatically using the **earthquake scenario** command. So, after first running the earthquake scenario and all static wind and snow scenarios, with the earthquake scenario active you select the "Combinations" and "Predefined Combinations" command. The combinations of the active scenario are automatically filled in. To automatically

create the other combinations (wind and snow) press the button $Ave_{\mu o \varsigma} - Xiovi$. The wind and snow scenarios' coefficients are automatically populated, providing a complete file of combinations of all the study loads. Select Kataxúpnon to save it to use it for sizing.

By following the manual way you can:

 In addition to the "Default Combinations" you can add others with loadouts from other scenarios.

	LC10
Σενάριο	EC8 Static 💌
Φόρτιση	1
Τύπος	G 💌
Δράσεις	•

 In the field select from the lists "Script", enter the number of the "Charge" in the specific scenario, the "Type", the "Actions" and possibly give a "Description"

• Add the combinations for the "Snow" scenario that includes the snow loads:

Create		a scr	ipt	that	to	include	the	load	snow:
			Συμμετοχή 🤇	Φορτίσεων					
Ονομα	Χιόνι		Static Χιόνι Φορτίσεις Σενισσίου	g(m/sec)	2) 9.81				
Ανάλυση	Static	•	1+	LC	LG1				
Τύπος	Static	-	2 3 4	LC1 LC2	1.00 0.00				

Perform a simple static analysis.

To add to the "Default Combinations" also those of the snow load, select LC10, charge 1, type Null, snow actions: and "Calculation".

	LC10
Σενάριο	Static Xióvi 🔳
Φόρτιση	1
Τύπος	NULL 🗾
Δράσεις	Xióvi H< 🗾
Περιγραφή	

Καταχώρηση the file of combinations.

 Choose from the 3 failure equations and the 3 functional equations in the top right part of the window. If you select all equations then

the combinations created will be based on Eurocode 1.

If respectively you select only the 1st and 3rd failure equation and the 1st functionality equation then the generated combinations will be based on the EAK.

Then click on "Calculate" and select the "Register" command to save these combinations as a *.cmb file in your study folder.

To read a *.cmb file that has already been entered, select "Read" To enter a combination as a *.txt file, select "TXT".

The Apaipeon commands allow you to add or remove lines or columns after selecting them, as in an .excel file.

The Διάβασμα Καταχώρηση commands allow you to register or open a

nation file.

combi

2.2 Controls

2.2.Σ1 Scenario checks of seismic elastic analyses

With one scenario of an Elastic analysis active: Select the "Checks" command and in the dialog box:

- enter the minimum length for defining the walls and click the corresponding button,
- set the mass and stiffness limits for the normal conditions of the building,
- Enable the creation of the two .txt files
- "OK."

2.2.Σ2 Seismic / EAK and Static& Dynamic- ET elastic analysis

- RESULTS OF TESTS IN THE MAIN BUILDING DIRECTIONS SIMPLIFIED SPECTRAL METHOD (EAK)
- TEST RESULTS DYNAMIC SPECTRAL METHOD WITH HOMOGENEOUS TORSION PAIRS (EAK)

Automatically opens a .txt file that, for "active analysis". includes the results of the checks:

- √ Building Station Mass and Rigidity Difference Check (& 3.5.1.[4].b,c)
- √ Weight Center Plastic Shaft Center & 3.3.3 E.A.K.
- ✓ Class 2 Impact Control-----Framework Volatility--- Address X
- √ 2nd Class Influence Control------Framework Volatility ------Address Z
- ✓ Checking the stability of frames (&14.3.1b E.K.O.S.2000) Address X
- ✓ Checking the stability of frames (&14.3.1b E.K.O.S.2000) Address Z
- \checkmark Checking the angular deflection of the S floor 4.2.2 Address X
- ✓ Checking the angular deformation of floor S 4.2.2 Z-address
- \checkmark Wall Adequacy Check & 4.1.4.2. β .[2]
- ✓ Building Torsional Sensitivity Check & 3.3.3.[7]
- ✓ Calculation of Seismic Moment & 4.1.7.2(3) E.A.K.
- \checkmark Proposed seismic joint without calculation & 4.1.7.2(4)

-

_

											Σελίδα : 1			
AI	ΙΟΤΕΛΕΣΝ	IATA EAEL)		TIΣ	KYPIEZ		θΥΝΣΕ	:IΣ T	OYKI	PIC	Y			
ΣΕΝΑΡΙΟ	:	1	аплопоінме	NH •	ΦΑΣΜΑΤΙΚ	H ME	σοδοε	(EAK	()					
	Έλεγχος	Διαφοράς Μ	αζών και Ακ	αμψ	ιών Σταθι	μών Κ	τιρίου		&3.	5.1.	[4].β,γ ΕΑΚ			
α/α Στάθμης	Συν/κο Υψός (m)	Συν.Μάζα KN/g	Συνολικες Ki*10^3	Ακαμ (KNn	ιψιες n)		Διαφορ (Mi+1	ές Ma I-Mi)/N	αζών - Αι Mi - (Ki+1	Ακαμψιων +1-Ki)/Ki				
			(Ki-X)	(Ki-Z)	(Δ	Mi)	(/	(ΔKi-X)		(ΔKi-Z)			
1	3.000	0.000	0.000		0.000		60	5		ŝ				
2	6.000	0.000	0.000	0.000			1836 48		αυξ. 0.00		αυξ. 0.00			
Ο Έλεγχος	ικανοποιεί τα	Κριτήρια Κανο	νικότητας					0XI						
ΣΗΜΕΙΩΣΕ	(Σ:	Μάζες : Η Α Ακαμψίες : Η	Αύξηση πρέπε Αύξηση πρέπ	ci <= ci <=	0.35 - H E/ 0.35 - H E	λάττωσι λάττωσ	η πρέπε η πρέπι	ει <= (ει <=	0.50 0.50					
	Κέντρ	ο Βάρους - Η	Κέντρο Ακαμ	ψία	ς						&3.3.3 EAK			
α/α	Συν/κο	Κέντ	ρο Βάρους			Κέντρο	Ακαμψία	ας		A	πόσταση			
Στάθμης	Υψός (m)	Χ Συντ.(m)	Ζ Συντ.(ι	m)	Χ Συν	т.(m)	Z	Συντ.	(m)	K.E	3 - K.A (m)			
1	3.000	0.000	0.	0000		0.000	0	(0.0000		0.0000			
2-Po	6.000	0.000	0.	0000		0.000	0	(0.0000		0.0000			
	T	Ελεγγος Επι	οροών 2ας Τ	άξει	ως					(8.	4.1.2.2 EAK)			
ļ	μεταθετότητ	α Πλαισίων (8	14.3.1α EKΩ	Σ200	0)	1		Διε	εύθυνση	X				
α/α Στάθμης	Συν/κο Υψός (m)	Κατακόρυφα Φορτία	Σχετική Μετ/ση (mm		Οριζόντια ώναμη (ΚΝ	1)	θx		Έλεγχο Πλ	χος 2ας Τάξη Πλαισίων				
1-0	3.000	0.000	0.000	00	0.00	00	0.000	0 E	ЕП.(<=0.1)	Αμετάθετα			
2-0	6.000	0.000	0.000	00	0.00	00	0.000	0 E	ETT.(<=0.1)	Αμετάθετα			
ΣΗΜΕΙΩΣΕ	(Σ:	ΕΠ = Επιτρέτ ΕΠΣ = Επιτρέτ ΑΠ = Απαγορ	τεται, για θx<= τεται με επαύξ ρεύεται, για 0.1	:0.1 ηση !<θx<	σεισμικής ε <=0.2	έντασης	;, για θχ	>0.2		- 222				
	Έ	Ελεγχος Επι	οροών 2ας Τ	άξει	ως					(&	4.1.2.2 EAK)			
4	Αμεταθετότητ	α Πλαισίων (8	14.3.1α ΕΚΩ	Σ200	0)			Διε	εύθυνση	Z				
α/α Στάθμης	Συν/κο Υψός (m)	Κατακόρυφα Φορτία	Σχετική Μετ/ση (mm)	Οριζόντια Δύναμη (ΚΝ	I)	θz		Έλεγχο Πλ	ς 2α αισί	ις Τάξης ων			
1-0	3.000	0.000	0.000	00	0.00	00	0.000	0 E	EП.(<=0.1)	Αμετάθετα			
2-0	6.000	0.000	0.000	00	0.00	00	0.000	0 E	ЕП.(<=0.1)	Αμετάθετα			
ΣΗΜΕΙΩΣΕ	Σ:	ΕΠ = Επιτρετ ΕΠΣ = Επιτρέτ ΑΠ = Απαγορ	τεται, για θx<= τεται με επαύξ ρεύεται, για 0.1	:0.1 ηση <θx<	σεισμικής ε <=0.2	έντασης	, για θx	>0.2						
	Έλεγχο	ς Αμεταθετότ	ητας Πλαισί	ίων					(&14.3	.1β	ΕΚΩΣ2000)			
	A	μεταθετότητα	Πλαισίων			l.		Δı	ιεύθυνση	Х				
Στάθμης Πάκτωσης	Αρ.Ορόφων n	Συν. Ύψος htot (m)	Κατ. Φορτία Fv (KN)	Kix	Ακαμψιες *10^3 (KNn	n2)	htot*: <=0.2+0 <=0.6	sqr(F)).1*n \	v/Kix) για n<=3 για n>=4		Έλεγχος Πλαισίων			
1	2	6.000	0.000		0.	000	0.0	000	0.	4	Αμετάθετα			
2	1	3.000	0.000		0.	000	0.0	000	0.	3	Αμετάθετα			
ΣΗΜΕΙΩΣΕ	Σ:	Το Συνολικό Ύ	ψος htot και ο A	ριθμό	ός Ορόφων μ	ιετράται	από την	κάθε α	στάθμη πά	ікти	ισης			
	Έλενχο	ς Αμεταθετότ	ητας Πλαισί	ίων					(&14.3.	1[ß]	ΕΚΩΣ2000)			
	A	μεταθετότητα	Πλαισίων					Δι	ιεύθυνση	Z				
Στάθμης Πάκτωσης	Αρ.Ορόφων n	Συν. Ύψος htot (m)	Κατ. Φορτία Fv (KN)	Kiz	Ακαμψιες *10^3 (KNn	n2)	htot*sqr(Fv/Kiz) <=0.2+0.1*n για n<=3 <=0.6 για n>=4				Έλεγχος Πλαισίων			
1	2	6.000	0.000		0.	000	0.0	000	0.	4	Αμετάθετα			
2	1	3.000	0.000		0.	000	0.0	000	0.	3	Αμετάθετα			
ΣΗΜΕΙΩΣΕ	(Σ:	Το Συνολικό Ύ	ψος htot και ο A	ριθμό	ός Ορόφων μ	ετράται	από την	κάθε α	στάθμη πά	ікти	ισης			

						Σελίδα : 2
	(Σ 4.2.2 EAK)					
Έλεγχος Γωνιακής Παραμόρφωσης ορόφου Διεύθυνση Χ						
α/α	Συν/κο	Σχετική Μετ/ση	Ύψος Ορόρφου	Συντελεστής γ	Έλ	εγχος Ορόφου
Στάθμης	Υψός (m)	(mm)	(m)	γ = q*Δ/2.5*h >= Δ/h		γορ=0.005
1	3.000	0.000	3.000	0.0000	E	ΕΠ (γ<=γορ)
2	6.000	0.000	3.000	0.0000	E	ΕΠ (γ<=γορ)
ΣΗΜΕΙΩΣΕΙΣ: ΕΠ = Επιτρέπεται ΑΠ = Απαγορεύεται						

	(Σ 4.2.2 EAK					
	Διεύθυνση Ζ					
α/α	Συν/κο	Σχετική Μετ/ση	Ύψος Ορόρφου	Συντελεστής γ	Έλεγχος Ορόφου	
Στάθμης	Υψός (m)	(mm)	(m)	γ = q*Δ/2.5*h >= Δ/h	γορ=0.005	
1	3.000	0.000	3.000	0.0000	ΕΠ (γ<=γορ)	
2	6.000	0.000	3.000	0.0000	ΕΠ (γ<=γορ)	
ΣΗΜΕΙΩΣΕΙΣ: ΕΠ = Επιτρέπεται ΑΠ = Απαγορεύεται						

Έλεγχος Επάρκειας Τοιχωμάτων								(&4	4.1.4.2.β [2] EAK)
							Στάθμη Αναφ	0 0.000(m)		
α/α Τέμνουσα Τοιχ./Συνολική Τέμν. = nvx						Τέμνουσα Τοιχ./Συνολική Τέμν. = nvz				
Στάθμη ς	Συνδ /μος	Τέμνουσα Τοιχωμάτων	Συνολική Τέμνουσα	nvx		Συνδ /μος	Τέμνουσα Τοιχωμάτων	Συνολική Τέμνουσα	nvz	
1 ***	0	0.000	0.000	0.00	АΠ.	0	0.000	0.000	0.00	АΠ.
2	0	0.000	0.000	0.00	АΠ.	0	0.000	0.000	0.00	АΠ.
ΣΗΜΕΙΩΣΕΙΣ: nv > 0.6 (&4.1.4.2 [β] ΕΑΚ) nv > 0.75 (&18.4.4.2 ΕΚΩΣ2000) **** = Στάθμη ελέγχου nv από κανονισμό										

Έλεγχος Στρεπτικής Ευαισθησίας Κτιρίου									(&3.3.3 [7] EAK)			
α/α Στάθμης	ρx	eox,i	ρmx,i	<=, >	ri	<mark>Σ.</mark> Ε.	ρz	eoz,i	ρmz,i	<=, >	ri	Σ.Ε .
1	0.00	0.00	0.00	<=	0.00	NAI	0.00	0.00	0.00	<=	0.00	NAI
2	0.00	0.00	0.00	<=	0.00	NAI	0.00	0.00	0.00	<=	0.00	NAI
Η κατασσκευή είναι Στρεπτικά Ευαίσθητη ΝΑΙ 📈 ΟΧΙ												
ρx, pz = Ακτίνες δυστρεψίας στάμης ως προς τον πλασματικό άξονα. ΣΗΜΕΙΩΣΕΙΣ: pmx,i, pmz,i = Ακτίνες δυστρεψίας στάμης ως προς το κέντρο μάζας της. eox,i, eoz,i, = Στατικές εκκεντρότητες κατα τις διευθύνσεις των κύριων αξόνων.												
	ΑΠΑΙΤΕΙΤΑΙ ΙΚΑΝΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΤΑ Χ-Χ ΚΑΤΑ Ζ-Ζ								A Z-Z			

Υπα	(&4.1.7.2 [3] EAK)						
Δ = Δυπολ. * q							
Δx (cm) Δz (cm)							
Διεύθυνση Χ	0.00	Διεύθυνση Ζ	0.00				
ΣΗΜΕΙΩΣΕΙΣ :	Υπολογισμός μέγιστων σεισμικών μετακινήσεων του κτιρίου σε περίπτωση εμβολισμού υποστυλωμάτων από πλάκες ή άλλα στοιχεία του παρακείμενου κτιρίου. Οι μετακινήσεις πολλαπλασιάστικαν με τον συντελεστή σεισμικής συμπεριφοράς q.						

Προτεινόμενο	(&4.1.7.2 [4] EAK)						
$\Delta = \Delta u \pi o \lambda. * q$							
Δx (cm) Δz (cm)							
Διεύθυνση Χ	4.00	Διεύθυνση Ζ	4.00				
ΣΗΜΕΙΩΣΕΙΣ:	Σε κτίρια που βρίσκονται σε επαφή, και όταν δεν υπάρχει πιθανότητα εμβολισμού υποστυλωμάτων σε κανένα από τα δύο κτίρια, το εύρος του αντίστοιχου αρμού, εφόσον δε γίνεται ακριβέστερος υπολογισμός, μπορεί να καθορίζεται με βάση τον συνολικό αριθμό των υπέρ το έδαφος εν επαφή ορόφων ώς εξής:						

2.2.Σ3 Seismic Elastic Analysis Seismic Scenario Tests / Old

RESULTS OF CHECKS UNDER THE OLD REGULATION

Automatically opens a .txt file that, for "active analysis". includes the results of the checks:

- ✓ Class 2 Influence Control Directorate X
- √ Class 2 Influence Control Directorate G
- √ Relative Displacement Control Directorate X
- √ Relative Displacement Control Direction Z
- √ Building Stability Check Directorate X
- √ Building Stability Control Direction Z
- √ Weight Center Elastic Turning Center

2.2.Σ4 Seismic Elastic Analysis Scenario Tests EC-8 and Type Static & Dynamic

EC-8_Greek Static (0)

EC-8_Greek Dynamic (1)

RESULTS OF TESTS IN THE MAIN BUILDING SECTIONS SIMPLIFIED SPECTRAL METHOD (EC8) TEST RESULTS DYNAMIC SPECTRAL METHOD WITH HOMOGENEOUS TORSIONAL PAIRS (EC8)

Automatically opens a file that, for "active analysis". includes the results of the checks

Observation.

Επιλογή Τύπου κατασκευής	× ▲ In the new version
Ο τύπος της κατασκευής που υπολογίστηκε είναι: Διεύθυνση Χ-Χ : Στρεπτικά Εύκαμπτο Σύστημα Διεύθυνση Ζ-Ζ : Στρεπτικά Εύκαμπτο Σύστημα Εκτελέστε εκ νέου το σενάριο της ανάλυσης, επιλέγοντος ανά κατεύθυνση στις παραμέτρους τον παραπάνω τύπο της κατασκευής ΟΚ	added the automatic control and corresponding warning for the cases where a different formula results construction from the analysis in relation to what the user has set of parameters.

CHAPTER 8A 'ANALYSIS'

													Σε	λíδα : 1
4		ΤΕΛΕΣΝ	MATA E	NELX	ON K	ATA	τις κ	YPIE	ΣΔΙΕΊ	(OYN)	ΕΙΣ ΤΟ	KTI	PIOY	
ΣENAP	0:			A	INOTIC	DIHME	NΗΦ	ΑλΜΑ	пкн м	EΘΟΔΟ	2 (EC8)			
	Έ	λεγχος	Διαφο	ράς Μαί	ζών κ	αι Ακα	αμψια	ών Στα	τθμών	Κτιρίο	J		(παρ.4	.2.3.3.
α/α Στάθμης	Y	Συν/κο ψός (m)	Συν.M KN/g	άζα }	Συνο Ki	λικες Α *10^3 (ς Ακαμψιες Δ 3 (KNm)				Διαφορές Μαζών - Ακαμψιων (Mi+1-Mi)/Mi - (Ki+1-Ki)/Ki			
					(Ki-X)		(K	i•Z)	(∆Mi)	(ΔKi	-X)	(∆Ki-Z)	
1	3.0	00	0.000	0.00	10	0.	000							
2	16.0	00	0.000	10.00	10	0.	000		εn.		αυς. υ.ι	10	αυς υ	.00
Ο Έλεγχο	ς ικαι	νοποιεί τα	Κριτήρι	α Κανονι	κότητα	ς					OXI			-
ΣΗΜΕΙΩΣ	E/Σ:		Μάζες Ακαμψ	Η Αι ες : Η Α	ίξηση ύξηση	πρέπει πρέπε	<= 0 c; <= (.35 - H 0.35 - H	Ελάττω Ι Ελάττω	ση πρέ ιση πρε	τει <= 0.5 πει <= 0.5	0 i0		
				Kéva	oo Br	άοους	- Ké	VTOO A	kaumi	ac				
α/α	T	Συν/κο	1	Κέντρο	Βάρο	υς	1		Κέντρ	ο Ακαμ	μίας	T	Απόσ	ταση
Στάθμησ	3	/ψός (m)	XΣ	.тvu	Z	Συντ.(π	n)	XΣ	UVT.(m)		Ζ Συντ.(m)	иvт.(m) К.В - К.		
1		3.000	1	0.0000		0.0	000		0.0	000	0.0000		0.000	
2		6.000		0.0000		0.0	000		0.0	000	0.0	000		0.0000
		Σε	ισμική	Τέμνου	σα Τα	οιχωμ	ιάτω	v					Παρ	. 5.1.2
		Σεισμικι	ή Τέμνο	υσα Τοι)	(ωμάτ	ων			2	τάθμη	Αναφοράς		0 0.0	100(m)
ala	Σunz	Τέμνοι	υσα Τοιχ.	Συνολική	Τέμν. =	nvx	ED /	Συνδ	Τέμν	ουσα Το	ιχ./Συνολικ	ή Τέμν.	= nvz	ED /A
Στάθμη ς	/μος	Τέμνα Τοιχωμ	ουσα Jάτων	Συνολι Τέμνου	κή σα	nvx	AΠ.	/μος	Τέμ Τοιχι	νουσα ωμάτων	Συνοί Τέμνο	λική υσα	ική ισα nvz	
1 ***	0		0.000	0	000	0.00	AΠ.	0		0.000		0.000	0.00 AF	
2	0	*** - T-	0.000	0	000	0.00	ΑΠ.	0	1	0.00	0	0.000	0.00	АΠ.
201012122	E12.	= 210	αθμή ενε	yxou nv	апо ка	νονισμ	0							
Διούθυμα	N.	Καθ	ορισμ	ός Συστ	ήματο	ος Κτι	ρίου	0						
Διεύθυνσι	17	Σύστημ	ια Πλαιά	itov itov										
	1	153				V	<i>i</i>		_				0	432
α/α	Σιο				Συντ	λ<4	ατοι	Ai Ai	Aimax		Ai max/	r	пар	. 4.2.3.
Στάθμη ς	Υψό	ς (m)	(m)	(m)	Lmax	/Lmin	(n	n2)	(m2)	Ao	Ao	ĸ	ανονικό	τητα
1		3.000	11.10	10.90		0.000		0.00	0.0	0 0.00	0.00	IN	ανοποι	είται
2	1	6.000	11.10	10.90		0.000		0.00	0.0	0 0.00	0.00	ls	ανοποι	είται
	Ko	νονικότητ	τα σε Κα	ίτοψη			Πα	ιρ. 4.2.	3.2		Διεύ	θυνση	۱X	
α/α Στάθμης	Σ Yu	υν/κο ιός (m)	Σι sqrt (.	ivt. r EKt/Σκ_)	>:	-	sqr	Συντ. Is t (IOma	ss)	Εκκει	/τρότητα .o(m)	K	ανονικό	τητα
1		3.000		0.00	0				0.000		0.000	lĸ	ανοποι	είται
2		6.000		0.00	D				0.000		0.000	ls	ανοποι	είται
	Ko	νονικότη	τα σε Κα	ίτοψη			Πα	ιρ. 4.2.	3.2		Διεύ	θυνση	Z	
α/α Στάθμης	Σ Yu	υν/κο ιός (m)	Σι sqrt (ivt. r EKt/Σκ_)	>:	-	sqr	Συντ. Is t (IOma	ss)	Εκκε	Εκκεντρότητα ε_o(m)		Κανονικότητα	
1		3.000		0.00	D				0.000		0.000	lĸ	ανοποι	είται
2		6.000		0.00	D		0.000					lĸ	ανοποι	είται

													Z si	\ίδα : 1		
				A	тот	ΕΛΕΣ	MATA	EAE	ΓΧΩΝ			-				
ΣΕΝΑΡΙ	0:		YNAM	κη φας	MATI	KH ME	ΘΟΔΟ	ε me	ομοΣΗ	ΜΑ ΣΤΙ		ЕҮП	H (EC8)			
	E)	εγχος	Διαφο	ράς Μα	ζών	και Ακ	αμψιώ	ον Στα	αθμών Ι	Κτιρίοι	J		(παρ.4	.2.3.3.		
α/α Στάθμης	Σι Yψ	uv/κο ός (m)	Συν.M KN/	άζα g	Συv	Συνολικες Ακαμψιες Κί*10^3 (KNm)				Διαφα (Mi-	ορές Μαζώ +1-Μi)/Mi -	v - A) (Ki+1	- Ακαμψιων Ki+1-Ki)/Ki			
					(Ki-X	.)	(Ki	-Z)	((ΔMi) (ΔKi-X)			(ΔH	(i-Z)		
1	3.00	0	123.75	0 486	7.198	2	2168.95	4		50	1 0 10					
	6.00	0	57.199	389	3.758	11	1735.16	3	ελ. Ο	.53	ελ. 0.19 NAL		ελ. 0.	20		
Έλεγχα	ς ικανα	οποιεί το	Κριτήρι	α Κανονι	κότητ	ας					OXI	_	+ +	-		
τΗΜΕΙΩΣ	ΈΙΣ:		Μάζες Ακαμψ	: Η Α ίες : Η Α	ύξηση ύξησι	η πρέπε η πρέπ	ει <= 0. ει <= 0	35 - H 35 - F	Ελάττωι Η Ελάττω	ση πρέι ση πρέ	τει <= 0.50 πει <= 0.50	,				
				Κέντ	τρο Ε	Βάρου	ς - Κέν	/τρο /	Ακαμψί	ας						
a/a	1	Συν/κο		Κέντρα	Βάρ	ους			Κέντρ	ο Ακαμι	μίας		Απόσταση			
Σταθμης	5 YI	ψος (m)	XΣ	UVT.(m)	Z	Συντ.(m)	XΣ	uvt.(m)		Z Συντ.(m) K.B - I		K.B - K.	A (m)		
1	-	3.000		5.4309	5	6.	6729		6.28	184	5.6797			0.9503		
2		0.000	1	0.3700		Э.	0/30		0.77	03	0.40	79		1.4 192		
		Σ	εισμική	Τέμνοι	σα	Τοιχω	μάτων	1	1		_		Παρ	. 5.1.2		
	Σεισμική Γέμνουσα Τοιχωμάτων Στάθμη Αναφοράς									0 0.0	00(m)					
ala	Συνδ	Τέμνουσα Τοιχ./Συνολική Τέμν.				= nvx EΠ / Συνδ Τ			Τέμν	ουσα Το	ιχ./Συνολική	Τέμν.	= nvz	ED /A		
τάθμη ς	/μος	Τέμν Τοιχω	ουσα μάτων	Συνολ Τέμνοι	ική ισα	nvx	AΠ.	/μος	Τέμ Τοιχι	Τέμνουσα Συνολι Τοιχωμάτων Τέμνου		ική ισα	nvz	П.		
1 ***	0		0.000	0	.000	0.00	О АΠ.	0		0.000		0.000	0.00	AΠ.		
2	0	*** - 5-	0.000	0	.000	0.00	AΠ.	0		0.00	0 0	0.000	0.00	AΠ.		
.mmE1122	E12.	= 21	αθμή ελι	syxoo nv	ano k	avovio	μο									
10	N	Kal	ορισμ	ός Συστ	τήμα:	τος Κι	ripiou									
ιεύθυνσι	1 X:	Σύστοι	ια Πλαι	Vuic												
1000000	16.	120011	a indi						_	_		_		125		
ala	Sur 1	Έλε	YXOC H	ανονικα	στητα	ας σε Ι	Κατοψ	η	A:	1	Ai mar (]		Παρ	. 4.2.3.		
α/α τάθμης	Υψός	(m)	(m)	(m)	Lma	x/Lmin	(m	12)	(m2)	Ao	Au, max/ Ao	K	ανονικό	τητα		
1	3	.000	11.10	10.90		1.018	3	0.00	0.0	0 120.	0.00	le	ανοποι	είται		
2	6	.000	11.10	10.90		1.018	3	0.00	0.0	0 120.	0.00	le	ανοποι	είται		
	Καν	ονικότη	τα σε Κ	άτοψη			Πα	0. 4.2.	3.2		Διεύθ	θυνση	x ر			
α/α τάθμης	Συ Υψά	ν/κο δς (m)	Σ sqrt (UVT. r ΣKt/Σκ_)		>=	Sqrt	UVT. Is (IOma	iss)	Εκκεν ε_	ντρότητα o(m)	К	ανονικό	τητα		
1		3.000		8.39	0				4.516		0.410	lĸ	ανοποιι	είται		
2		6.000		8.29	7				4.579		0.236	lĸ	ανοποιι	είται		
	Καν	ονικότη	τα σε Κ	άτοψη			Πα	p. 4.2.	3.2		Διεύθ	θυνση	JΖ			
α/α τάθμης	Συ Υψά	ν/κο δς (m)	Σ sqrt (uvt. r ΣKt/Σκ_)		>=	Σ sqrt	UVT. Is (IOma	i ISS)	Εκκεν ε_	ντρότητα ο(m)	К	Κανονικότητα			
1		3.000		5.60	1				4.516		0.857	lĸ	ανοποιι	είται		
2		6.000		5.53	9				4.579		1.400	lĸ	Ικανοποιείται			

1

								Σελίδα : 2	
	Αποτελέσμα	ατα Ελέγχων Ι	Κανονικό	τητα	ς				
Έλεγχος Κα	νονικότητας λόγ	γω κατανομής Μ	Ιάζας	la	ανοποιείται	1			
Έλεγχος Κα	νονικότητας λόγ	γω κατανομής Α	καμψίας	la	ανοποιείται	-			
Έλεγχος Κα	νονικότητας λόγ	γω Μορφολογία	ς κατά Χ	Ικανοποιείται					
Έλεγχος Κα	νονικότητας λόγ	γω Μορφολογία	ς κατά Ζ	b	ανοποιείται				
Κανονικότητ	α Κάτοψης συν	ολικά για όλο το	κτίριο	b	ανοποιείται	1			
Κανονικότητ	α Καθ' Ύψος (α	συνολικά)		b	ανοποιείται				
	Amore Emile	antin 2ac Tás			Auri			Des 4422(2)(2)(4	
L	Sun/ko	Κατακόρμηα	Svenik	6		00001	` <u> </u>	Thup. 4.4.2.2(2),(3),(4	
α/α Στάθμης	Υψός (m)	Φορτία	Μετ/ση (r	nm)	Δύναμη (ΚΝ	ŋ	θх	Πλαισίων	
1-0	3.000	0.000	0.	0000	0.0	00	0.0000	EII.(<=0.1)	
2-0	6.000	0.000	0.	0000	0.0	00	0.0000	EII.(<=0.1)	
21110/2132221) F	ΑΠ = Απαγορ	εύεται, για	θx>0	3	nuons, j	100.1.04	-0.2	
E	λεγχος Επιρ	ροων 2ας Τας	εως		Διευ	θυνση 2		Παρ. 4.4.2.2(2),(3),(4	
α/α Στάθμης	Συν/κο Υψός (m)	Φορτία	Σχετικ Μετ/ση (r	η mm)	Δύναμη (ΚΝ	θz		Ελεγχος 2ας Γαξης Πλαισίων	
1-0	3.000	0.000	0.	0000	0.0	00	0.0000	EII.(<=0.1)	
2-0	6.000	0.000	0.	0000	0.0	00	0.0000	EII.(<=0.1)	
ΣΗΜΕΙΩΣΕΙ	Σ:	ΕΠΣ = Επιτρέπ ΑΠ = Απαγορ	τεταί με επι ιεύεται, για	αύξης θx>0	η σεισμικής έν 3	/τασης, ι	/ıa 0.1<θx<	=0.2	
Έλεγχος	ς Σχετικής Με	τακίνησης ορ	όφου	Διε	ώθυνση Χ			Παρ. 4.4.3.2(1	
α/α Στάθμης	Συν/κο Υψός (m)	Μέγιστη ds= Σχετική Μετ/ση	q*de (mm)	Υψο	ος Ορόρφου (m)	Συντελεστής dr*v/h		Έλεγχος Ορόφου Όριο=0.005	
1	3.000		0.000		3.000	0.0000		Ικανοποιείται	
2	6.000		0.000		3.000		0.0000	Ικανοποιείται	
Έλεγχος	ς Σχετικής Με	τακίνησης ορ	όφου	Δι	εύθυνση Ζ			Παρ. 4.4.3.2(1)	
α/α Στάθμης	Συν/κο Υψός (m)	Μέγιστη ds= Σχετική Μετ/ση	q*de (mm)	Ύψα	ος Ορόρφου (m)	Συντε dr	λεστής 'v/h	Έλεγχος Ορόφου Όριο=0.005	
1	3.000		0.000		3.000		0.0000	Ικανοποιείται	
2	6.000		0.000		3.000		0.0000	Ικανοποιείται	
	Υπο	λογισμός Σεια	τμικού Αρ	ύομα				παρ. 4.4.2.7(1),(2),(3	
			$\Delta = L$	Δυπο	λ.*q				
Δx (cm)								Δz (cm)	
Διεύθυνση Χ	2	0.00		Διεύ	θυνση Z		0.00		
ΣΗΜΕ	ΙΩΣΕΙΣ:	Υπολογισμός μέγιστων σεισμικών μετακινήσεων του κτις εμβολισμού υποστυλωμάτων από πλάκες ή άλλα στοιχεί Οι μετακινήσεις πολλαπλαοιάσπικαν με τον συντελεστή ο						περίπτωση αρακείμενου κτιρίου. ς συμπεριφοράς q.	

Αποτελέσμ	ατα Ελέγχων Ι		-					
		ανονικότ	тпта	c	1			
AIKOILIIOC VO.	νω κατανομής Μ	άζας	Δε	ν Ικανοποιείτ.	1			
νικότητας λό	νω κατανομής Αι	caumiac	h	ανοποιείται	1			
νικότητας λό	νω Μοραολογία	κατά Χ	h	ανοποιείται	1			
νικότητας λό	νω Μορφολογία	κατά Ζ	b	ανοποιείται	1			
Κάτοιμης συν	ολικά για όλο το	KTIOLO		ανοποιείται	1			
Καθ' Ύψος (α	συνολικά)	The	As	ν Ικανοποιείτ	1			
			_					
γχος Επιρ	ροών 2ας Τάξ	εως		Διεύ	θυνση	X	Παρ. 4.4.2.2(2),(3),(4	
Συν/κο Υψός (m)	Φορτία	Σχετικη Μετ/ση (m	ן nm)) Δύναμη (KN)		θx	Ελεγχος 2ας Γαξης Πλαισίων	
3.000	0.000	0.0	0000	0.0	00	0.0000	EI.(<=0.1)	
6.000	0.000	0.0	0000	0.0	00	0.0000	EII.(<=0.1)	
	ΕΠΣ = Επιτρέπ ΑΠ = Απαγορ	εται με επα εύεται, για θ	αύξησ θx>0.	η σεισμικής έν 3	τασης	για 0.1<θx<	=0.2	
γχος Επιρ	ροών 2ας Τάξ	εως		Διεύθ		Z	Παρ. 4.4.2.2(2),(3),(4	
Συν/κο Υψός (m)	Κατακόρυφα Φορτία	Σχετική Μετ/ση (m	i nm)	Οριζόντια Δύναμη (ΚΝ)	θz	Έλεγχος 2ας Τάξης Πλαισίων	
3.000	0.000	0.0	0.00 0.00		00	0.0000	EI.(<=0.1)	
6.000	0.000	0.0	0.00		00	0.0000	EI.(<=0.1)	
	ΕΠΣ = Επιτρέπ ΑΠ = Απαγορ	εται με επο εύεται, για θ	αύξησ Θx>0.	η σεισμικής έν 3	τασης	, για 0.1<θx<	=0.2	
XETIKING INIS	TURINIONS OP	οφου		A lineanon			Tup. 4.4.5.2(1)	
Συν/κο (ψός (m)	Μέγιστη ds= Σχετική Μετ/ση	(mm)	Υψο	(m)	Συντελεστής dr*v/h		Έλεγχος Ορόφου Όριο=0.005	
3.000		0.000		3.000	0.0000		Ικανοποιείται	
6.000		0.000		3.000		0.0000	Ικανοποιείται	
Εχετικής Με	τακίνησης ορ	όφου	Διε	ύθυνση Ζ			Παρ. 4.4.3.2(1	
Συν/κο (ψός (m)	Μέγιστη ds= Σχετική Μετ/ση	q*de (mm)	Ύψο	ις Ορόρφου (m)	Συν	rελεστής ir*v/h	Έλεγχος Ορόφου Όριο=0.005	
3.000		0.000		3.000		0.0000	Ικανοποιείται	
6.000		0.000		3.000		0.0000	Ικανοποιείται	
Υπο	λογισμός Σεισ	μικού Αρ	μού				παρ. 4.4.2.7(1),(2),(3	
		$\Delta = \Delta$	υπο	λ. * q	-			
	Δx (cm)					Δz (cm)	
			Διεύθυνση Ζ			0.00		
	μεδήτητας λό μεδήτητας λό άποψη στους ζαθ Υψος (ε ζάτοψης συν ζαθ Υψος (π) ζωνίκο Υφος Επιρ ζωνίκο	πκάτητας λόγω Μορφολογία στοις το πορφολογία στοις	mcdimas, λόγω Μορφολογίας κατά Σ mcdimas, λόγω Μορφολογίας κατά Σ mcdimas, λόγω Μορφολογίας κατά Σ mcdimas, λόγω Μορφολογίας κατά Σ mcdimas, μα δα το το κτίρο Garong, αυνολικά για όλα το κτίρο Garong, αυνολικά για όλα το κτίρο Garong, αυνολικά Europera 2000 μου Ell = Emplemas για θιατική Marting με επηρογιατίας για ALT = Amayopautra, για Vivos (m) Φορτία Μετίας για Ell = Emplemas για ALT = Amayopautra, για Construction για Ell = Emplemas για ALT = Amayopautra, για ALT = Amayopautra, για	mcdimra ζ. λόγω Μορφολογίας κατά Χ΄ μ. mcdimra ζ. λόγω Μορφολογίας κατά Ζ΄ μ. mcdimra ζ. λόγω Μορφολογίας κατά Ζ΄ mcdimra ζ. mcdim ζ. mcdimra ζ. mcdim ζ. mcdimra ζ. mcdim ζ. mcdimra ζ. mcdimra ζ.	πκάτητος λόγωι Μορφολογίας κατά Χ Ικαναττοιείται πκάτητας λόγωι Μορφολογίας κατά Χ Ικαναττοιείται πκάτητας λόγωι Μορφολογίας κατά X Ικαναττοιείται Γάστοις συνολικά) Δεν Ικαναττοιείται GB "Υφος (συνολικά) Δεν Ικαναττοιείται Yapoč Estrapoδύν 26α Tάξεκως Δενί Ικαναττοιείται Υμούς (m) Κατατόριφας Σχετική Λριστιά Ματίας (mm) Δύναμη (NN) ΕΠ Εποράτεται για θο το το το Καιτάς δραφιά Σχετική Ορί ζότται ΕΠ Εποράτεται για θο το το το ΕΠ Εποράτεται για θο το το το ΕΠ Εποράτεται για θο το το το Υφός (m) Κατατόριφας δας τόξεως Δατά Λμος (m) Φορτία Ματάσι (mm) Δύναμη (NN) Υμος (m) Φορτία Ματάσι (mm) Δύναμη (NN) Κατατόριφας το δραφτία Ματάσι (mm) Δύναμη (NN) Σουσι δο 000 0.000 3.000 6.000 0.000 3.000 δ.000 0.000 3.000 3.000	πκάτητος λόγω Μορφολογίας κατά Χ Ικανοττοείται πκάτητας λόγω Μορφολογίας κατά Χ Ικανοττοείται Αντιστικά Καγματικά και δε το κτίσμος Γαραίος συνολικά) Γενιστορία GB "Υφος (συνολικά) Δεν Ικανοττοείται Δινάζους (συνολικά) Δεν Ικανοττοείται Δινάζους (συνολικά) Δεν Ικανοττοείται Δινάζους (συνολικά) Δεν Ικανοττοείται Δινάζους (συνολικά) YeoC Επτιροδύν 28G 163/csc δ.000 Δού Ο 0000 Οριζόπτα Δινάζους (συνολικά) Δεν Ικανοττοείται Δινάζους (συνολικά) ΕΠ Επτιράτεταις για θεν-0.1 ΕΠ ΕΠ Επτιράτεταις για θεν-0.3 ΕΠ Επτιράτεταις για θεν-0.3 Οριζόπτα Δινάζους Δού 0.000 0.000 Α ΕΠ Επτιράτεταις για θεν-0.3 Δύναμη (ΝΝ) Δύναμη (ΝΝ) ΕΠ Επτιράτεταις για θεν-0.3 Οριζόπτα Δινάζους Δύναμη (ΝΝ) Δύναμη (ΝΝ) Δυνος (m) Δύναμη (ΝΝ) Φορτία Μετίση (m) Δύναμη (ΝΝ) ΕΠ ΕΠ Επτιράτεταις για θεν-0.3 Οριζόπτα Δινάζους Δύναμη (ΝΝ) ΕΠ Επτιράτεταις για θεν-0.3 Δύναμη (ΝΝ) ΕΠ Επτιράτεταις για θεν-0.3 Οριζόπτα Δινάζου στο 3.000 Δύναμη (ΝΠ) ΕΠ Επτιράτεταις για θεν-0.3 Δύναμη (ΝΠ) Σ	πκάτητος λόγω Μορφολογίας κατά Χ Ικανοποιείται πκάτητας λόγω Μορφολογίας κατά Χ Ικανοποιείται πκάτητας λόγω Μορφολογίας κατά Ζ Ικανοποιείται Γάστος ομουκλαί) Δεν Ικανοποιείται Δεν Ικανοποιείται Δατό Καναπορμάτου Δεν Ικανοποιείται Δικύθωνση Χ Δενικανοποιείται Δικύθωνση Χ Δικύθωνση Χ Δικύθωνση Χ Δικύθωνση Χ Δικύθωνση Δ Δικύ	

Σελίδα : 1

2.2.Σ5 Scenario checks of elastic and non-elastic analyses (CAN LTD.)

See Inland. Use Chapter 8B:Analysis-Part 2: Existing buildings made of OS and masonry using the Equivalent Framework Method

2.3 Seismic action

3.000

6.000

1

0.000

0.000

2.3.Σ1 Seismic action of seismic elastic analysis scenarios Static

	ΔΕΔΟΜΕΝΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΕΙΣΜΙΚΗΣ ΔΡΑΣΗΣ											
ΣΕΝΑΡ	10 :											
ΠΑΡΑΜΕΤΡΟΙ ΥΠΟΛΟΓΙΣΜΟΥ												
Κλάση Π	λαστιμότι	ητας	D	CM								
Τύπος Φά	άσματος		T	Τύπος 1								
Ζωνη Σει	ισμικής ει	τικινδυν ότητα ς	I									
Επιτάχυν	ση Βαρύι	ητος g (m/sec2)	9.	9.810								
Σεισμική Ι	Επιτάχυν	ση εδάφους αgR	0.	0.16 * 9.810 = 1.5696								
Σύστημα	κτιρίου κα	ατά Χ	Σ	Σύστημα Πλαισίων								
Σύστημα	κτιρίου κα	ατά Ζ	Σ	Σύστημα Πλαισίων								
Κατηγορί	α Εδάφο	υς	В	В								
Χαρακτηρ	ριστικές Π	ερίοδοι Φάσματος	; TI	B=0.15 TC=0.50 T	D=2.50(sec)							
Συντελεσ	τής-Κατη	γορία Σπουδαιότη	τας γι	γι=1.000 - Σ2								
Συντελεσ	τής Σεισμ	ικής Συμπεριφορά	ç q	x=0.000 - qz=0.0	00 - qy=0.000							
Συντελεσ	τής Φασμ	ατικής Ενίσχυσης	β	o=2.50								
Ποσοστό	κρίσιμης	απόσβεσης	ξ	ξ=5.000%								
α/α		Υψόμετρο	Διαστάσεις	Κατόψεων	Συντ.ψ2	Τυχηματικέ	ές Εκκ/τες					
Στάθμ	ης	(m)	Llx (m)	Llz (m)	Φορτ.2	etix(m)	etiz(m)					
0		0.000	11.100	10.900	0.30	0.000	0.000					
1		3.000	11.100	10.900	0.30	0.000	0.000					
2		6.000	11.100	10.900	0.30	0.000	0.000					
ΣΗΜΕΙΩΣ	ΣΕΙΣ:	eti	x = 0.050 * Llx,	, etiz = 0.050 *	LIIZ							
		Ιδιοπερίοδοι	Κτιρίου με το	ον προσεγγιστ	ικό τύπο τα	ou Rayleigh						
Διεύθυνα	τη Ix	TIx (sec) =	0.0000	Rd(T) = 0	0000							
Διεύθυνα	τη llz	TIIz (sec) =	0.0000	Rd(T) = 0	.0000							
Διεύθυνα	лу	Tv (sec) =	0.0000	Rd(T) = 0	.0000							
		Καθ'ύψος	; Κατανομή Σε	εισμικής Δύναμη	ς (Τέμνουσα	-Ροπή)						
ala	Υιμόμ	ΤΕΜΝΟΥΣΕΣ	ΦΟΡΤΙΣΕΩΝ		ΣΤΡΕΠΤΙΚ	ΈΣ ΡΟΠΕΣ (KNm)						
Στάθμ.	(m)	ФОРТ. 3-I (Kn)	ФОРТ. 4-I (Kn)	ΦΟΡΤ.5-I Από maxe	ΦΟΡΤ. z Από min	5-I ΦΟΡΤ. 7-I nez Από maxex	ΦΟΡΤ. 8-I Aπó minex					
0	0.000	0.000	0.0	0.0 0.0	00 0	.000 0.000	0.000					

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2.3.Σ2 Seismic action of seismic elastic analysis scenarios Dynamic & Static (with Building Identity from Dynamic Analysis)

												Σελίδα : 1		
			ΔΕΔΟΜ	ENA KA		ΤΕΛΕΣ	ΕΜΑΤΑ Σ	ειΣΜΙ	κης γ	∆₽⁄	ΣΗΣ			
ΣΕΝΑΡ	' IO :													
				ПАР	PAMET	POI YI	ΙΟΛΟΓΙΣ	MOY						
Κλάση Π	λαστιμ	ότητ	ας			DCM								
Τύπος Φ	άσματ	ος			Т	Τύπος 1								
Ζωνη Σε	σμικής	; ETTI	ανδυνότητας		11	II								
Εππάχυν	ση Βα	ρύτη	τος g (m/sec	2)	9	9.810								
Σεισμική	Εππάχ	ωνσι	η εδάφους αξ	JR	0	0.24 * 9.810 = 2.3544								
Σύστημα	ктірі́о	и кат	rá X		Σ	Σύστημα Πλαισίων								
Σύστημα	ктірі́о	и кат	rá Z		Σ	Σύστημα Πλαισίων								
Κατηγορία Εδάφους						в								
Характη	ριστικέ	ς Περ	ρίοδοι Φάσμα	πος	Т	B=0.15	TC=0.50	TD=2.	50(sec))				
Συντελεστής-Κατηγορία Σπουδαιότητας						=1.000	- Σ2							
Συντελεσ	τής Σε	σμικ	ής Συμπεριφ	οράς	9	x=3.12	0 - qz=3.1	20 - qy	=1.500)				
Συντελεστής Δισματικής Ενίσχυσης						o=2.50								
Ποσοστό	κρίσιμ	ιης α	πόσβεσης	ξ	=5.000	%								
α/α Υψα		ψόμετρο	Διασ	τάσεις	Κατόψ	εων	Συν	т.ψ2	Τυχηματικές Εκκ/τες					
Στάθμ	ης	c (m) Llx (m)		m)	LI	z (m)	Φο	рт.2		etix(m) etiz(m)				
0			0.000		11.100		10.900		0.300		0.555	0.545		
1		-	3.000		11.100		10.900		0.300		0.555	0.545		
2			6.000		11.100		10.900	1.11-	0.300)	0.555	0.545		
ZHIMENI	ZEIZ.			enx - 0.0	50 - Lh	κ, euz	- 0.050 -	LIIZ						
			Ιδιοπερίοδ	οι Κτιρία	ου με τ	ον προ	οσεγγιστ	ικό τύ	πο τοι	J R	ayleigh			
Διεύθυνα	σηlx		Tix (sec) =	0.18	06	Rd(T) =	= 2.	2638						
Διεύθυνο	σηllz		Tllz (sec) =	0.21	35	Rd(T) = 2.2638								
Διεύθυνα	ով հ		Tv (sec)=	= 0.07	74	Rd(T) = 3.5316								
			Καθ'ύψ	ιος Καταν	ομή Σε	ισμική	ς Δύναμη	ς (Τέμν	ουσα-Ι	Рот	rý)			
ala	Υωό		TEMNOYS	ΕΣ ΦΟΡΙ	ΠΣΕΩΝ			ΣΤΡΕ	ENTIKE	ΣF	ΟΠΕΣ (KNm)			
Στάθμ.	(m	5	ФОРТ. 3-I (Kn)	Φ0	PT. 4-I (Kn)	A	ΦΟΡΤ.5-I πό maxe	z Απ	OPT. 6 ró min	-l ez	ΦΟΡΤ. 7-I Aπó maxex	ΦΟΡΤ. 8-I Από minex		
0	0.0	00	0.0	00	0.	000	0.0	00	0.0	00	0.000	0.000		
1	3.0	00	212.8	65	212.8	865	116.01	11	-116.0	11	118.140	-118.140		
2	6.0	00	196.7	76	196.7	776	107.24	43	-107.2	43	109.211	-109.211		
			Ιδι	οπερίοδ	οι Κτιρ	ρίου ατ	το Δυναι	μικη Α	νάλυσ	η				
α/α Ιδιομορ	φής	к	υκλική Συχν w (Rad/s	/ότητα ec)		Συ) v (Cy	(νότητα cles/sec)				Περίοδος Τ(sec)			
1			2.9425E+	001		4.68	31E+000				2.1353E-00	01		
2			3.4784E+	001		5.53	61E+000				1.8063E-00	01		
3			4.5024E+	001		7.16	57E+000				1.3955E-00	01		
4			8.1143E+	001		1.29	14E+001				7.7434E-00)2		
5			9.2628E+	001		1.47	42E+001				6.7832E-00	02		
6			9.5295E+	001		1.51	67E+001				6.5934E-00	02		
2			1.0301E+	002		1.03	98E+004		6.0995E-002					
9			1.1791E+	002		1.87	66E+001			_	5.3288E-00	02		
10			1.2857E+	002		2.04	63E+001				4.8869E-00	02		
		_		-	anie 1	V	ovic IE:	0110.0		_				
				2 0115/1	33101	Ζυμμει		opopo	νωγ					

α/α Διευθύνσεις στο Κύριο Σύστημα Συντεταγμένων Ιδιομορφής Κατά X Κατά Z Κατά Y 1 6.0413E+000 2.1684E-001 -9.9684E+000 2 -1.0473E+001 -1.7020E-001 -6.6643E+000 3 3.0024E+000 -6.3262E-002 -3.3579E+000 4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1388E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 10 1.0	
Ιδιομορφής Κατά Χ Κατά Ζ Κατά Υ 1 6.0413E+000 2.1684E-001 -9.9684E+000 2 -1.0473E+001 -1.7020E-001 -6.6643E+000 3 3.0024E+000 -6.3262E-002 -3.3579E+000 4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 10 1.0238E-001 -3.03525E-001 -4.0357E+000	
1 6.0413E+000 2.1684E-001 -9.9684E+000 2 -1.0473E+001 -1.7020E-001 -6.6643E+000 3 3.0024E+000 -6.3262E-002 -3.3579E+000 4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 10 1.0238E-001 -3.0525E-001 -4.0357E+000 10 1.0238E-001 -3.050 2.017 <td< th=""><th></th></td<>	
2 -1.0473E+001 -1.7020E-001 -6.6643E+000 3 3.0024E+000 -6.3262E-002 -3.3579E+000 4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ ΜΑΖΕΣ % 1 36.50 20.17 0.05 0.03 99.37 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 <t< td=""><td></td></t<>	
3 3.0024E+000 -6.3262E-002 -3.3579E+000 4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Euvrε/εστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συντολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ ΜΑΖΕΣ Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 3 2 109.68 60.61 0.03 0.02 44.41 3	
4 9.8379E-001 -1.1186E+001 3.9841E-001 5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 VEVTE/EGTÉS Συμμετοχής Μαζών ανά Διεύθυνση Kará Z = 1.0 Κατά X = 1.0 Kará Y = 1.0 Kará Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 4 0.97 0.53 125.13 69.15	
5 1.3118E+000 5.3215E+000 6.7177E-001 6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Curre/corrég Supperoxýg Maζών ανά Διεύθυνση Kará Z = 1.0 Κατά X = 1.0 Kará Y = 1.0 Kará Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ % 1 36.50 20.17 0.05 0.03 99.37 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16	
6 -4.9495E-001 -3.1233E+000 9.4501E-001 7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Curre/corrég Supperoxýg Maζών ανά Διεύθυνση Kará Z = 1.0 Κατά X = 1.0 Kará Y = 1.0 Kará Z = 1.0 α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ ΜΑΖΕΣ 1 36.50 20.17 0.05 0.03 99.37 1 2 109.68 60.61 0.03 0.02 44.41 1 1 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16	
7 -1.6260E-001 3.1368E+000 1.1630E+000 8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά Z = 1.0 Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Κατά Z % Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 3 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16	
8 -3.2081E-002 1.7227E+000 1.0451E-001 9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά Z = 1.0 Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (μ α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ 10 36.50 20.17 0.05 0.03 99.37 12 10 36.50 20.17 0.05 0.03 99.37 13 39.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 0.45	
9 -1.2099E+000 -1.4001E+000 -1.3492E-001 10 1.0238E-001 -3.3525E-001 -4.0357E+000 Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Κατά Z % Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 1 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45 5 0.45	
10 1.0238E-001 -3.3525E-001 -4.0357E+000 Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Κατά Z % Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 29.22 15.65 0.45 4	
Συντελεστές Συμμετοχής Μαζών ανά Διεύθυνση Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ ΜΑΖΕΣ Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 1 2 109.68 60.61 0.03 0.02 44.41 1 3 9.01 4.98 0.00 0.00 11.28 1 4 0.97 0.53 125.13 69.15 0.16 1	
Κατά X = 1.0 Κατά Y = 1.0 Κατά Z = 1.0 Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Ιδιομορφής Κατά X % Κατά Y % Κατά Z % 1 36.50 20.17 0.05 0.03 99.37 3 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 28.22 15.65 0.45	
Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ (k Ιδιομορφής Κατά Χ % Κατά Υ % Kατά Ζ % 1 36.50 20.17 0.05 0.03 99.37 1 2 109.68 60.61 0.03 0.02 44.41 1 3 9.01 4.98 0.00 0.00 11.28 1 4 0.97 0.53 125.13 69.15 0.16 0.16	
Δρώσες Ιδιομορφικές Μάζες Συνολική Μάζα = 180.949 (k α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ ΜΑΖΕΣ </th <th></th>	
α/α ΜΕΤΑΦΟΡΙΚΕΣ ΜΑΖΕΣ Ιδιομορφής Κατά Χ % Κατά Υ % Κατά Ζ % 1 36.50 20.17 0.05 0.03 99.37 2 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 22.32 15.55 0.45	N/gr)
Ιδιομορφής Κατά Χ % Κατά Υ % Κατά Ζ % 1 36.50 20.17 0.05 0.03 99.37 9.37 <t< th=""><th></th></t<>	
1 36.50 20.17 0.05 0.03 99.37 2 109.68 60.61 0.03 0.02 44.41 3 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 28.32 15.65 0.45	
2 109.68 60.61 0.03 0.02 44.41 1 3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 28.32 15.55 0.45	54.92
3 9.01 4.98 0.00 0.00 11.28 4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 28.32 15.65 0.45	24.54
4 0.97 0.53 125.13 69.15 0.16 5 1.72 0.95 28.32 15.65 0.45	6.23
5 172 0.95 22.22 16.65 0.45	0.09
0 1.72 0.00 20.02 10.00 0.40	0.25
6 0.24 0.14 9.75 5.39 0.89	0.49
7 0.03 0.01 9.84 5.44 1.35	0.75
8 0.00 0.00 2.97 1.64 0.01	0.01
9 1.46 0.81 1.96 1.08 0.02	0.01
10 0.01 0.01 0.11 0.06 16.29	9.00
ΣΥΝΟΛΑ: 159.62 88.21 178.17 98.46 174.23	96.29
Πίνακας Τιμών Φάσματος Απόκρισης Επιταχύνσεων Αριθμός Σημείων = 39	
α/α Σημείου Περίοδος ΤΙΜΕΣ ΦΑΣΜΑΤΟΣ	
Εισαγωγής (sec) Τιμή χ Τιμή γ Τιμ	ήz
1 0.00 1.88 1.41 1.	88
2 0.05 2.01 3.53 2.	01
3 0.10 2.14 3.53 2.	14
4 0.15 2.26 3.53 2.	26
5 0.20 2.26 2.65 2.	26
6 0.25 2.26 2.12 2.	26
7 0.30 2.26 1.77 2.	26
8 0.35 2.26 1.51 2.	26
9 0.40 2.26 1.32 2.	26
10 0.45 2.26 1.18 2.	26
11 0.50 2.26 1.06 2.	26
12 0.55 2.06 0.96 2	06
13 0.60 1.89 0.88 1.	89
14 0.65 1.74 0.81 1.	74
15 0.70 1.62 0.76 1.	
16 0.75 1.51 0.71 1.	62
17 0.80 1.41 0.66 1.	62 51
18 0.85 1.33 0.62 1.	62 51 41
19 0.90 1.26 0.59 1.	62 51 41 33
20 0.95 1.19 0.56 1.	62 51 41 33 26

2.3.Σ3SeismicactionScenariosTyresandAnelasticAnalyses (CAN.EPE)

See Inland. Use Chapter 8B:Analysis-Part 2: Existing buildings made of OS and masonry using the Equivalent Framework Method

Show

With an active Elastic Analysis scenario: they have a supervisory character and inform the designer about the distribution and the deviation of the masses of the structure, the flexural and shear stiffness, the distribution of seismic forces and the deviation of the Po centres.

Ŧ		-	×	Z	P	"	Z		x Z		Ŧ	Ŧ
Κατανομή Μαζών	Απόκ μαζ	κλιση κ ζών Α	(αμπτική Η καμψία ΧΑ	(αμπτική καμψία	Διατμητ Ζ Ακαμψί	ική Διατ α Χ. Ακο	τμητική Σ τμψία Ζ Δι	εισμι υνάμι	κές Σεισμικ εις Χ Δυνάμει	ές Α ςΖκέν	πόκλιση Αι ντρων Ρο Ρ	τόκλιση 20 - ΚΜ
Depend	×	Report	X	Penort	N N	Eµφάνια	η	Report	X	Report	X	Report
Κατανομή Μαζών	×	Απόκλιση Κά	έντρων Μάζας	Καμπτική Ακαμι	μία X *10-3 💌	Διατμητική Ακ	αμψία Χ.*10-3 💌	Κατανοι	μή Σεισμικών Δυνάμεω 💌	Απόκλιση Κ	ίέντρων Ρο 💌	Απόκλιση Ρο - Κ.Μ.
18.00	41.56	18.00	0.00	18.00	59.73	18.00	1555.56	18.00	60.63	18.00	0.24	18.00
15.00	43.91	15.00	0.00	15.00	59.73	15.00	1555.56	15.00	39.48	15.00	0.00	15.00
12.00	43.91	12.00	0.00	12.00		12.00	1555.56	12.00	31.58	12.00	0.60	12.00
9.00	77.94	9.00	••••• 3.77	9.00	89.60	9.00	2333.33	9.00	42.05	9.00	······ 1.76	9.001.87
6.00	79.12	6.00	••••3.88	6.00	- 89.60	6.00	2333.33	6.00	28.45	6.00	••••••1.80	6.00~~~1.98
3.00	79.12	3.00	••••• 3.88	3.00	- 89.60	3.00	2333.33	3.00	14.23	3.00	••••••••••••1.81	3.001.98
0.00	M(kN)	0.00 H(m)	+ Dx(m)	0.00 H(m)	klim	0.00 H(m)	kNm	0.00 0 H(m)	0.00 F(kN)	0.00 H(m)	+ Dx(m)	0.00 H(m) – Z
18.00	-5.35%	18.00	0.00	18.00	0.00%	18.00	0.00%	18.00 2	60.63	18.00	0.00-	18.000.00-
15.00	0.00%	15.00	0.00	15.00	0.00%	15.00	0.00%	15.00 -	100.11	15.00	•••••• 0.00	15.000.00-
12.00	-43.66%	12.00		12.00		12.00		12.00	131.69	12.00		12.000.00-
9.00	-1.48%	9.00		9.00	0.00%	9.00	0.00%	9.00	173.74	9.00	0.00	9.000.00-
6.00	0.00%	6.00		6.00	0.00%	6.00	0.00%	6.00	202.19	6.00		6.000.00-
3.00	0.00%	3.00	0.00	3.00	0.00%	3.00	0.00%	3.00	216.42	3.00	0.00	3.000.00-
0.00	▶ DM(%)	0.00 H(m)	+ Dz(m)	0.00 H(m)	(%)	0.00 H(m)	(%)	0.00 H(m)	216.42 Q(kN)	0.00 H(m)	- → + Dz(m)	0.00

Each command opens the homonymous diagram, as shown in the analysis of the study.

You can select the commands or jump from one chart to another by selecting from the list

3.1 Display of Elastic and Anelastic analyses (CAN.EPE)

See Inland. Use Chapter 8B:Analysis-Part 2: Existing buildings made of OS and masonry using the Equivalent Framework Method