

User's Manual B.COLUMNS DETAILING

CONTENTS

Α.	cc	OLUMN'S DETAILING	3
	(a,	a) Joint Check	7
	(b)	b) COPY-PASTE Reinforcement	9
	(c)	c) Recalculation	9
	(d)	d) Interaction Surface M-N Calculation	9
	1.	GEOMETRY	20
	2.	MAIN REINFORCEMENT	24
	2.1	How to modify the main reinforcing bars:	24
	2.1.1	1 TO EDIT THE DIAMETER AND THE TYPE OF CORNER BARS:	24
	2.1.2	2 TO EDIT THE NUMBER, THE DIAMETER AND THE TYPE OF SIDE BARS:	25
	2.1.3	3 TO ADD SIDE BARS IN CROSS-SECTION DETAILING WITH NO BARS:	26
	2.1.4	4 TO DELETE REBARS:	27
	2.1.5	5 TO INSERT THE DIMENSION LINES:	27
	2.1.6	6 TO EXCLUDE A REBAR FROM THE BIAXIAL BENDING RESISTANCE CHECK:	30
	2.1.7	7 TO APPLY THE CHANGES, THAT YOU MAKE, TO ALL THE SAME REBARS:	30
	3.	STIRRUPS	31
			31
	3.1	STIRRUPS EDITING:	32
	3.1.1	1 TO MODIFY A STIRRUP:	32
	3.1.2	2 TO ADD A NEW STIRRUP:	
	3.1.3	3 TO DELETE A STIRRUP:	
	4.	DIAGRAMS	
	5.	INTERNAL FORCES	
	6.	RESULTS	35
	7.	EXPLORATION	
	8.	DEFORMATIONS	
	9.	CHECKS	3/
	9.1	BENDING RESISTANCE CHECK:	
	9.2	SHEAR RESISTANCE CHECK:	
	9.3	CONFINEMENT VERIFICATION:	40
в.	cc	OLUMNS-WALLS REINFORCEMENT	44
	REGA	ARDING CONFINEMENT	44
	10.	REHABILITATION OF COLUMNS-WALLS	44
	11.	CONCRETE JACKET FOR COLUMNS-WALLS	47
	12.	FRPs – LAMINATES OF COLUMNS-WALLS	53
	13.	PROTECTION OF COLUMNS-WALLS	57
	14.	STEEL CAGE	58

A. COLUMN'S DETAILING

		Colu	mn Editor — 🗖 🗙
💓 Geometry			😼 🔍 🔍 🔍 💥 🕸 🕸 😼 🗤
Main Reinforc		Heights (m)	
Stirrups	Concrete Cover 25 n		
1.1 Diagrams	Insert Dimensions	h1 0.6	
Results	X Y XYZ	h2 1.1	
Exploration	Detailing	✓ Detailing Design	
Deformations	Тор	Bottom	
Checks	No Continious	Continuity	
Jacketing	Cover (mm) 25	Cover (mm) 25	
	Design Scales		
< >	Cross Section 1: 20	Detailing 1: 50	
Recalculation	Name	Кб - 23	
Joint Check	Type	COLUMN 40 /40	
Y = 700.00	Differitions		
+ M-N -	H - Hcr (cm)	300 /60	
	Area (cm^2) omax % - cm^2	1600.00 / 1600.00 4.0 - 64.00	
Сору	pcalc % - cm^2	1.27 - 20.36	
Paste			
ОК	Rebars		
Cancel	8Φ18		

The New Column's Editor - "Detailing" of SCADA Pro is part of an innovative new group of tools to manage the design details of the columns.

In "Detailing" you can edit, modify and complete section's details and steel reinforcement. You may as well display internal forces, diagrams, results, and deformations, and check all the changes you made or apply retrofitting methods.

An integrated tool, flexible, easy and very useful that saves you a lot of time.

A Prerequisite for accessing the "Detailing" tool is the design of the columns.

NOTE:

There are two ways of accessing the "Detailing" tool:

1) Open Members Design>> Columns >> Results >> Detailing.

2) In "Members Design" unit area, press right click on the column to open the command list.

Then, select the command to open the following dialog box:

		Colu	mn Editor	- 🗆 🗙
Geometry			🚯 🗨 🗨 🕀 💮 🗶 🕼	l 🙀 🕸 🚮 🛛 Info
MAin Reinfor		11-11-Z.X		
Stirrupps	Bars Cover 25 m			
M Diagrams	Insert Dimensions	h1 1 H		
Σ Internal Forc	х ү хүх	h2 1.55 h1		+ 1
Results	Detailing			s 5
Exploration	Тор	Kάτω		, TT []
Deformation:	Continuity Width (cm) 55	Vidth (cm) 55		
Checks	Cover (mm) 25	Cover (mm) 25		
	Design Scales		918 =	
Recalculation	Cross Section 1: 20	Detailing 1: 50		ŧ
Joint Check	Name Type	K2 - 18 COLUMN	(3) SIGU()(5.00 (https://doi.org/ 0) SIGU()(5.00 (https://doi.o	
Y = 1001.00	Dimensions	100 /25 /25 /85		
+ ?? -	H - Hcr (cm)	285 /100	200	
Сору	Area (cm^2) pmax % - cm^2	4000.00 / 4000.00 4.0 - 160.00		
Paste	pcalc % - cm^2	1.84 - 73.76	\$ \$	
OK	Bars 8Φ18+17Φ20			' ⊥,⊥
Cancer				
The horizor $\bigcirc \bigcirc \bigcirc$ In detail:	ital bar above t	the cad interface he	Ips to manage the drawing.	nfo
: Thi reinforceme	s button is use ent in the 3D vi	ed for the display of iew.	f the column and the steel	
zoom all res	: These b spectively.	outtons are used fo	or zoom in, zoom out and	
(Pan).	button is used	d for moving the dr	rawing inside the cad area	
This and click th delete.	button is used ne rebar, the si	l for deleting object tirrup or the dimen	ts (Delete). Select the icon sion line that you want to	

(a) Joint Check

Joint Check

By selecting this command, you perform the check that EC8 provides for DCM ductility categories in chapters §5.5.2.3 & §5.5.3.3. Prerequisite for making the check is to activate the corresponding checkbox "Node Check" in Column Design Parameters.

Column Edito	и Г	↔		\times
Geometry	• • • • • • • • • • • • • • • • • • •	1	Info	
Main Reinfor				
Stirrups	Concrete Cover 25 mm			
M Diagrams				
D Internal Forc	X V Default Column Beam Left Beam Right			
Results	Detailing $hc(cm)$ 40 Name $\Delta 2$ Name $\Delta 1$			
Exploration	$\begin{array}{c c} Top \\ \hline Continuit \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\$			-41
Deformation:	Width (cr v Stirrups As Top 9.23628 As Top 9.23628			
Checks	Cover (m			
<	Design Sca			
Recalculation	Calquation			145
Joint Check	Type Dimensions	$\sqrt{-}$		
Y = 600.00	ОК			
+ M-N -	H - Hơr (ơn Area (ơn ^			
Paste	pmax % - cm^2 4.0 - 64.00 pcalc % - cm^2 3.33 - 53.28			
ОК	Rebars			
Cancel				
Node Check		×		
Node Check		×		
Node Check	Direction I (1)	×		
Node Check	Direction I (1) Column I (1) Column I (1) μ(2) ame Δ1	×		
Node Check	Direction I (1) Column I (1) L(2)	×		
Node Check	Direction I (1) V Devault Column I (1) Column I (2) I (1) hc(cm) 40 II (2) I (1) hc(cm) 40 II (2) I (2) I (1) hc(cm) 40 II (2) I (2) I (1) hc(cm) 40 II (2) hc(cm) 40	×		
Node Check	Direction I (1) V V V_{ih}	×		
Node Check	Direction I (1) V V V V V V V V	×		
Node Check	Direction I (1) Direction I (1) Column I (1) column I (1) column I (1) column I (2) column I (2) column I (1) column I (1) column I (2) column I (2	×		
Node Check	Direction I (1) Direction I (1) Column I (2) II (1) cc(cm) 40 II (2) II (1) bc(cm) 40 II (2) cc(cm) 40 I	×		
Node Check	Direction I (1) Direction I (1) Column I (1) column I (1) bc(cm) 40 II (2) column I (1) bc(cm) 40 II (2) bc(cm) 40 II (2) bc(cm) 40 II (2) bw(cm) 25 bw(cm) 6.15752	×		
Node Check	Direction I (1) V V V V V V V V	×		
Node Check	Direction I (1) V V_h	×		
Node Check	Direction I (1) Column I (2) II (1) bc(cm) 40 II (2) II (1) bc(cm) 40 II (2) II (2) II (1) bw(cm) 25 Stirrups Φ 8 10 n 2 As Top 9.23628 As Top 9.23628 As Bottom 6.15752 As Bottom 6.15752	×		
Node Check	Direction I (1) V V_h	×		
Node Check	Direction I (1) Column I (1) column I (2) bc(cm) 40 II (2) bc(cm) 40 II (2) $con^2 2^{5}$ $bw(cm) 2^{5}$ $bw(cm) 2^{5}$ $bw(cm) 2^{5}$ $bw(cm) 2^{5}$ $bw(cm) 2^{5}$ $bw(cm) 2^{5}$ As Top 9.23628 As Bottom 6.15752 As Bottom 6.15752 column I (2) $bw(cm) 2^{5}$ $bw(cm) 2^{$	×		

Thus, the dimensions of the elements reaching the node are filled in. Concerning the column, the area of the vertical reinforcement of the column As for the selected direction and the corresponding horizontal stirrups are written. Concerning the beams, As the top is the top beam reinforcement, As bottom is the bottom beam reinforcement.

Press the Calculation button

am-Column Joint (EC8 & 5.5.3.3)	
ection : I(1)	Calculation
umn : hc= 40 bc= 40 As=32.92 hjc=35.00	Carcalardon
am : bw= 25 hw= 60 As1=9.24 As2=6.16 bj=40.00	
am : bw= 25 hw= 60 As1=9.24 As2=6.16 bj=40.00	OK
hjw=55.00 bj=40.00 Asd=15.39	OK
mb. N Vc vd Vjhd Vcr Vcr1 Ptop Preq Paddit	
-964.60 4.71 0.45 798.45 350.58 595.67 0 0.00183 0.00661 10.52	Cancel
<u>-714 52 3 49 0 33 799 67 516 92 536 12 0 0 00183 0 00928 16 39</u>	Cancel

The empty field is filled in with the Node Check results for the selected direction and each combination. The summary results are recorded at the end of the Results file. In this file, the requirement to change or not the cross section of the column, as well as the possible requirement

for additional horizontal (Ash) and vertical (Asv) reinforcement and their unfavorable combination are shown.

1 The program characterizes automatically the node as End and Middle.

(b) COPY-PASTE Reinforcement

Сору
Paste

The Copy and Paste commands allow the copy of column's/wall's reinforcement (Copy) to another one (Paste), in order every change you make in a column's/wall's cross-section to be copied to the same or different level without repeating the process.

USE:

- All the changes made in the column on a defined level can be copied to other levels, avoiding in this way repeating the same process many times. Just select Copy, change the level by using

the following buttons and and and and then select Paste.

- To copy column's/wall's reinforcement to another column/wall, click on COPY, close the Details window and then open the details of the other element in the same or different level and then click on PASTE so as the reinforcement of the selected element to be copied.

(c) Recalculation

Recalculation: The "Recalculation" command is used to restore the steel reinforcement of the section as it was before any modifications.

Select OK to save the changes and close the Editor window, or Cancel to get out of the window without saving it.

(d) Interaction Surface M-N Calculation

It's about the calculation and the display of the interaction moment-axial diagrams, based on the geometry of the cross section, the quality of the materials and its reinforcement. Produced the three-dimensional diagram of the envelope of strength (My, Mz, N). Furthermore, produced

stress-strain schematic diagrams for steel and concrete, and detailed the Moment-Curvature diagram. Follows the process for the production of the diagrams and the presentation of all the necessary information you can see in this dialog.

• DIAGRAM CALCULATION

To generate the interaction diagram of the selected section, select either «Calc1» or "Calc2" key. The difference between the two diagrams concerns the part of the diagram with a negative axial force (N) representing the strength.

-**Calc1:** produces linear tension diagram, which means \rightarrow lower tensile strengths, so \rightarrow unfavorable conditions.

-**Calc2**: calculates also the intermediate tension values, resulting \rightarrow the diagram acquire curved form and accurate results in tension.

The upper part of the diagram (Compression) not affected by the above selection. Both ways of calculation ("Calc1" and "Calc2") produce identical Compression diagram.

For two-dimensional display, select the corresponding buttons:

HORIZONTAL BAR MAXIMUM VALUES

These values represent the maximum for each intensive size and they are the extreme curves values.

The coordinate system of the resistance moments coincides with the column's local system, but on condition that you do not change the default, angle beta calculates from the program when the mathematical model is created.

The dashed line represents the axes negative values.

•	SEARCH	POINTS	ON	THE	DIAG	iRAM

N	My	Mz	Angle
0	0	0	0
Step	100	N-	N+

This field can be used in different ways:

1. To display the horizontal curves of the diagram

By typing in the Step field only a value and clicking the N+

each "click" forms the horizontal curve represents the values of the resistance moments, for a specific value of axial force and different angle values of the neutral axis.

Field "Step" represents the increase or reduction step to form the horizontal curves.

- Choosing N + curves designed upward
- Choosing N + curves designed downward

Furthermore, for each horizontal curve showing the relative maximum positive and negative values My and Mz of the diagram representing the maximum positive and negative moment resistance for the specific N.

1. For the calculation of the resistance moments for specific intensive values N-My-Mz

Typing the values of the internal forces N, My, Mz in the appropriate fields and clicking/, the program:

A By press and hold the left mouse button and moving it, you can rotate the diagram.

1. Geometry

📧 Column Edito	r		— 🗆 X
Geometry			
Main Reinford		Heights (m)	
Stirrups	Concrete Cover 30	mm н 2.98	
M Diagrams	Insert Dimensions	h1 0.76	
D Internal Forc	X Y XY	Z h2 1.26	
Results	Detailing	Detailing Design	
Exploration	Top	Bottom	
Deformation:	Width (cm) 50	Width (cm) 50	┼╴┼╴╴╴╴╴╴╴
Checks	Cover (mm) 30	Cover (mm) 30	
	Decise Scales		
< >	Cross Section 1: 20	Detailing 1: 50	
Recalculation			
	Name	K1 - 17	
	Туре	COLUMN	
	Dimensions	25 /76	
Y = 771.00			
+ M-N -	H - Hcr (cm)	298 /76	© 82662/31.00 (p1-0.76) L(p)-1.01
	Area (cm^2)	1900.00 / 1900.00	
Сору	pmax % - cm^2	4.0 - 76.00	. 100
Paste	pcalc % - cm^2	1.07 - 20.36	
ОК	Rebars		n.,
Cancel	8Φ14+4Φ16		() 1186 (71-1.26) () 1187 (71-
			O 1306/11.64 (R1=0.76) I(m)=1.24

Geometry: This section includes a group of design parameters in the center, and a cad interface on the right, that adapts to the parameters changes.

Change the value of the cover in the "Bar Cover" field, and the corresponding drawing will be automatically updated.

Bars Cover 25 mm		Bars Cover 40 mm	
	+ ·· →		+-·-+

In the "Insert Dimensions" field, select the direction X and show with a left click, in the cad interface the start and end points of the dimension line, and the point to place the dimension.

Follow the same procedure for the other two directions.

In the "Heights" field, you can modify the total height of the column and the critical length on the top and the bottom of the column, near the joints. Change the corresponding values and the drawing will be updated automatically.

In the "Detailing" field, if you don't want the detailing design to be displayed in the cad interface, you can deactivate the "Detailing Design" checkbox.

Height and Cover are related to the connected with the column members, up and down. Change the values and the program updates the drawing automatically.

In the "Design Scales" field defined in the corresponding fields the scale of the drawing of the cross-section and the detailing:

Design Scales	_	
Cross Section 1:	20	Detailing 1: 50

On the bottom of the dialog box, there is a table with non-editable general data regarding the column.

Name	K3 - 3
Туре	COLUMN
Dimensions	40 /60
H - Hcr (cm)	300 /60
Area (cm^2)	2400.00 / 2400.00
pmax % - cm^2	4.0 - 96.00
pcalc % - cm^2	1.06 - 25.45
Rebars	
10Φ18	

2. Main Reinforcement

In the "Main Reinforcement" section you can modify the main steel reinforcement of the column. Main reinforcement consists of two categories of bars concerning their position inside cross-

section; corner and side bars. Moving the mouse near the bar in the drawing, the state is activated so that you can read the characteristics (category, type).

The procedure to modify is first to select the command, then to show the rebar and then follow the editing process described below.

2.1 How to modify the main reinforcing bars:

2.1.1 To edit the diameter and the type of corner bars:

. Select the command "Edit Bars" Edit Bars

. Left click on a corner bar inside the drawing of the column cross-section.

. The status "Edit" is activated

Corner
.The following fields are updated automatically with the
parameters of the selected rebar. Select a new diameter from the drop-down list and the new type*.
. Left click on the rebar to apply the modification.
2.1.2 To edit the number, the diameter and the type of side bars:
. Select the command "Edit Bars" Edit Bars . Left click on a side bar inside the drawing of the column cross-section
. The status "Edit" is activated Edit
. The following fields are updated automatically
Side Interview of the side bars is, and it will be automatically distributed at equal distances.

2.1.3 To add side bars in cross-section detailing with no bars:

. Select the command "Add Bars" Add Bars
 The "Add" status is activated Add Select from the corresponding drop-down lists the category "side", the rebar diameter Side • 16 • mm and the type* (see page 16).
. Type the number of the side bars And the spacing between them. . Left click to show a corner bar and then the opposite one on the same side.

. Then repeat the previous step on the other side of the cross-section.

. Right click to activate the "Info" status

In cases where the two opposite corner bars have different diameters and you want to insert side bars between them, active the checkbox Directic and follow the procedure of adding side bars (see page 14).

2.1.4 To delete rebars:

. From the horizontal bar, select the following button

. Activate the status "Delete"

. Left click on the rebars of the cross-section detailing to delete them.

. Right click to activate the status "Info"

2.1.5 To insert the dimension lines:

. Select the command "Add Dimension Lines"

. The "Add" status Add

Info

Add Dimension line (Bar

Distances)

In the "Type" list select one of the types presented above. Each type activates the corresponding fields on the right, where you enter the corresponding values in cm.

In all types, you can insert hooks, up and down, the bar. Select the direction -90, +90 and press the button "Hooks Calculation" to automatically calculate the corresponding values or type your values.

2.1.6 To exclude a rebar from the Biaxial Bending resistance check:
select the command "Edit Bars" <u>Edit Bars</u> . left click on the rebar inside the detailing of the column cross-section
. activate the "Edit" status
. activate the following checkbox
. right click to activate the status
2.1.7 To apply the changes, that you make, to all the same rebars:
. Select the command "Edit Rebars" Edit Bars . Left click on the rebar inside the detailing of the column cross-section
. Activate the status "Edit ["]
 Activate the following checkbox Make the changes and they will be applied to all rebars of the same diameter. Right click to activate the status "Info"

In "Stirrups" you can make modifications and interventions on the stirrups of the column. The procedure is similar to the one applied for the main reinforcement. Select the command, show the stirrup and change the type, diameter or individual spacing.

In the "Type" list you can change the type of the stirrups. For stirrups of Type 1 and 2, you may as well define the corresponding length and angle.

Stirrups Data Diameter (mm)	Φ 6	_
Distances per		
In All Height (H)	0 cm	₀ੁ
In Critical Height (h2)	0 cm	0 ^{h2}
In non-crtical Height	0 cm	0 h1
In Critical Height (h1)	0 cm	

"Stirrups Data" field, contains the diameter of the stirrup and the spacing. You can select a diameter from the drop-down list " Φ " and fill in the corresponding field with the spacing value as appropriate.

Moving the mouse near the stirrup in the cad interface, with the status "Info" activated the stirrup is colored red and the values of the diameter and the spacing are updated automatically.

3.1 Stirrups editing:
3.1.1 To modify a stirrup:
. Select the command "Edit Stirrup" Edit Stirrup . Activate the status "Edit" Edit .
 Select the stirrup Select the new diameter, the new spacing, the new type. Right click.
3.1.2 To add a new stirrup:
. Select the command "Add Stirrup"
 Activate the status "Add" Add Select the diameter, the spacing, and the type Left click to show the rebars enclosed by the new stirrup The design is updated automatically and a new stirrup detailing is created with all the related data.
3.1.3 To delete a stirrup:
 From the horizontal bar, select the following button Activate the "Delete" status Left click on the stirrup of the cross section detailing to delete it
. Right click to activate the status "Info"

NOTES:

- ▲ In the design of the columns, the program takes into consideration that the calculated stirrups have the same diameter and a common spacing. If you modify the stirrups, it is proposed that the modification be uniform. In other cases, the program identifies the less favorable stirrup per area and place the rest stirrups uniformly concerning the less favorable.
- However you can put different stirrups per region, e.g. in a Γ-shaped cross-section, you can change the diameter or the spacing in "Checks" and perform the verification checks (see §2.9). Then go back to the field "Stirrups" and make the changes so that the drawing and the calculations' print-out will be updated.

4. Diagrams

In the "Diagrams" field (when the previous scenario of member design is active) a window opens that contains the diagrams of the internal forces, for each load case and each load combination. Moving the mouse along the column, in the diagrams, you can read the values of internal forces along the height of the column. (You can find this command in the "Results" as well, explained in the corresponding chapter of the user's manual).

5. Internal Forces

Columns-Walls	Editor								_ □
Ceometry									Info
MAin Reinfor	Combina	ation	• 1	•	Per Length	ı (cm) 50			
Stirrupps			+ 1.	35Lc1 + 1.	.50Lc2				
M Diagrams								and a set	
	0.00	226	0.97	16 76		M2(KNIII)	му		
2 contraction of the second	0.50	230	0.87	-16.76	-0.07	3,16			
Results	1.00	226	0.87	-16.76	-0.07	2.72		╷────┠┐	
	1.50	221	0.87	-16.76	-0.07	2.28			-
Exploration	2.00	216	0.87	-16.76	-0.07	1.85			
н	2.50	211	0.87	-16.76	-0.07	1.41			Ξ
Deformations	3.00	206	0.87	-16.76	-0.07	0.98			
Checks	3.10	205	0.87	-16.76	-0.07	0.89			
	-								
Recalculation									
Node Check								¹ +	1
Y = 400.00									Ő
+ -									
Сору									
Paste									
ОК									
Cancel	•						►		

In the "Internal Forces" you can read the values of all the internal forces for each load case and load combination.

In the "Per length (cm)" field Per Length (cm) 50 you define the position of the cross-sections of the column, concerning the column's height, where the values of the inertial forces will be calculated.

6. Results

🔝 Columns-Walls I	Editor	<u>- 🗆 ×</u>
Seometry	自 C00006 - WordPad	
45	File Edit View Insert Format Help	
MAin Reinfor		
Stirrupps		
	COLUM: K6 - MEMB.: 6 - Connection (nodes) Start:3 End :10	
Y Diagrams	KIND : RECTANGULAR by=30 bz=100 HEIGHT H= 3.10 Hcr.= 1.00	
TINternal Forc	fck (Mpa)=20.00 ycu/ycs =1.50/1.0 maxec(N,M)=0.0035 maxec(N)=0.002	
	fctm(Mpa) = 2.20 trd(Mpa) = 0.25	
Results	MAIN : B500C Es (Gpa)=200.00 fyk (Mpa)=500 ysu/yss=1.15/1.00 max ɛs=0.02	
Exploration	STIRRUPS : B500C Es(Gpa)=200.00 fyk(Mpa)=500 γsu/γss=1.15/1.00 max εs=0.02	
H	POSITION BOTTOM TOP	
Y Y Deformations		
Checks	Max normalised axial force vd y: vd= 0.05 comb. 79 z: vd= 0.05 comb. 79	
9-	App.bend.moment MSd(KNM) y= -79.25 z= 7.91 y= 37.45 z= -3.25	
	CONCRETE DEFORMATIONS ENVELOPE (0/00)	
Recalculation	Apex comb. Deform. Apex comb. Deform. Apex comb. Deform. Apex comb. Deform.	
	1 2 -0.2902 2 53 -0.2178 1 9 -0.1365 2 12 -0.0636	
Node Check	3 9 -0.2087 4 54 -0.1716 3 2 -0.1931 4 15 -0.2059	
Y = 400.00	Seis.shear force Y (KN) Start VEmin= -0.25 / VEmax= 438.11 = ζ= -0.001	
1	End VEmin= -0.25 / VEmax= 438.11 = ζ= -0.001	
+ -	Seis.shear force 2 (KN) Start VEmin= -11.39 / VEmax= -127.65 = ζ= 0.000 End VEmin= -11.39 / VEmax= -127.65 = ζ= 0.000	
Сору	SpanTop(critical)	
Paste	Seismic directionYZ+YZZ	
	Applied Tors. Moment TEd (KNM) 0.1 0.1 0.2 0.2 0.1 0.0	
	Resist.without reinf.VRd,c(KN) 145.2 124.4 129.6 110.1 127.8 125.7	-
Cancel	For Help, press F1	NUM //

In the "Results" field, a TXT file format opens with the results of the design checks derived from the critical load combination.

7. Exploration

🔝 Columns-Walls E	Editor	
68 a	📋 C00006 - WordPad	
Geometry	File Edit View Insert Format Help	
MAin Reinfor		
Stirrupps	Column Id: 7 (6)	
	COMB N My Mz Vy Vz Mx	
M Diagrams	Start 1 236.75 -19.55 3.59 0.87 -16.76 -0.07	
	End 1 205.36 32.41 0.89 0.87 -16.76 -0.07	
Internal Forc	Start 2 160.07 -13.05 1.42 -0.25 -11.39 -0.05	
	End 2 136.82 22.27 2.18 -0.25 -11.39 -0.05	
Results	Start 3 151.76 -43.03 22.95 12.22 -24.37 -0.13	
	End 3 128.51 32.50 -14.93 12.22 -24.37 -0.13	
Exploration	Start 4 131.51 -42.42 22.09 11.72 -23.88 -0.13	
	End 4 108.26 31.62 -14.23 11.72 -23.88 -0.13	
	Start 5 138.71 -4.84 22.37 11.80 -9.26 -0.14	
I I Derormodori.	End 5 115.46 23.88 -14.20 11.80 -9.26 -0.14	
Checks	Start 6 118.46 -4.23 21.52 11.30 -8.78 -0.13	
Circus	End 6 95.21 22.99 -13.51 11.30 -8.78 -0.13	
	Start 7 191.67 -20.94 -19.49 -12.38 -13.34 0.05	
	End 7 168.42 20.41 18.87 -12.38 -13.34 0.05	
	Start 8 171.41 -20.33 -20.35 -12.88 -12.86 0.05	
Recalculation	End 8 148.16 19.53 19.57 -12.88 -12.86 0.05	
	Start 9 178.61 17.26 -20.07 -12.80 1.77 0.04	
Node Check	End 9 155.36 11.79 19.60 -12.80 1.77 0.04	
	Start 10 158.36 17.87 -20.93 -13.30 2.25 0.04	
Y = 400.00	End 10 135.11 10.90 20.29 -13.30 2.25 0.04	
	Start 11 152.39 -42.17 22.29 11.84 -24.11 -0.10	
+ -	End 11 129.14 32.56 -14.42 11.84 -24.11 -0.10	
	Start 12 132.14 -41.56 21.43 11.34 -23.63 -0.10	
Сору	End 12 108.89 31.68 -13.73 11.34 -23.63 -0.10	
Paste	Start 13 138.09 -5.69 23.03 12.18 -9.52 -0.17	
	End 13 114.84 23.82 -14.71 12.18 -9.52 -0.17	
OK	Start 14 117.83 -5.08 22.18 11.67 -9.04 -0.17	_
Canad	4	
Cancel	For Help, press F1	NUM //

In the field "Exploration", similar to the field "Results", a TXT file format opens with the results of the design checks derived from all load combinations.

8. **Deformations**

In the "Deformations" field you can see how the cross-sections of the column, on the top and the bottom, are deformed, for each load case and each load combination. The compressive main reinforcement is denoted with blue color and the tensile with red.

9. Checks

I	Column Editor – 🗖
🥵 Geometry	😼 🔍 🔍 🗶 🕸 🕸 🚳 💴
Main Reinfor	Bending Resistance Check Y Z
Stirrups	Shear Resistance Check Run Checks
Diagrams	✓ Adequate Confinement Check
Internal Forc	Max distances based on the Design Regulations
Results	Max Distance (cm) 50 New Distance Calculation
Price data	Auto Define Stirrup Nodes
Exploration	Shear Resistance Check according to the table data
Deformation:	Area 0 s n N dri dr.2 Vd
Checks	
< >> Recalculation	
Y = 170.00	
+ " -	
Сору	08 55 F
Paste	
ОК	
Cancel	(2)8208/10.00 (h2=0.65)

In the "Checks" field you can perform local design checks on the column depending on the modification you've applied to the steel reinforcement, using the tools of the "Columns-Walls Editor" dialog box. So when you make modifications or additions to the main steel reinforcement, you should check the column against biaxial bending failure, and when you make modifications or additions to the stirrups, you should check the column against shear failure and confinement.

9.1 Bending Resistance Check:

. Activate the checkbox "Bending Res	sistance Check"	ling Resistance Check
. Select the "Run Checks" command	Run Checks	

The program rechecks the column against biaxial bending considering the modified rebars and displays "sufficient" when the design checks are satisfied. When the cross-section fails, either on the top or the bottom, the numbers of the load combinations causing the failure are displayed in the corresponding cross-section.

The check of the column against biaxial bending failure concerns only the equilibrium of the cross-section (adequacy check) without considering all the other limitations (minimum distance of the rebars, maximum steel reinforcement, etc.).

That's because it is possible to have a column that doesn't satisfy the design checks in the tab "Member design" yet it passes the local biaxial bending resistance check. This means that the column fails at the beginning because of the minimum distance of rebars or the maximum steel reinforcement in cross section. The type of failure is displayed in the "Exploration" file at the end of biaxial bending resistance checks.

1	98	76.798	40.508		165.702			
1	99	-24.810	-2.454		88.114			
Biaxial Bending Resu	lts	1 (1=okey,0=	fails	L	10=max	As	11=max number),

9.2 Shear Resistance Check:

 Shear Resistance Check . Activate the "Shear Resistance Check" checkbox Auto . Select the command "Auto" so that the following table will be updated, including the changes you have already done. Area Ф Ν di 1 di2 Vd s n 1 v 8 10 6 0 100.00 30.00 0.028 2 0 100.00 30.00 0.022 1 8 10 z 2 0.022 8 10 5 0 80.00 30.00 z 2 8 10 2 0 80.00 30.00 0.028 **NOTES** 1. You can modify this table and change the diameter Φ of the rebar, the distance s or the number of the critical cross-sections n. Adequate Confinement Check 2. Activate the following command and the changes you make directly into the table, are considered in the Shear Resistance Check. If you Shear Verification according to the table data do not activate the command then the initial values will be considered in the Shear Resistance Check, coming from the editor, automatically, by selecting the button "Auto". Run Checks . Select the command "Run Checks" On Shear Resistance Check, the program calculates the new spacing of the stirrups, according to the new diameter and the new number of the critical cross-sections. The procedure is the following: From the initial design, checks result in a required ratio A_{sw} / s of stirrups in Y and Z direction, for the critical and non-critical length (6 values). So, according to the new type of stirrups and the new diameter, the program starting from the maximum spacing, according to the design regulations, follows an iterative process searching that A_{sw} / s that is greater than the required one. The required is indicated in the parentheses. Check according to max spacing regulation DIR. YY: = 12.00(critical) / 30.00 DIR. ZZ: = 12.00(critical) / 30.00 SHEAR VERIFICATION Region 1

SHEAR VERIFICATION Region 1 y: 0 n=2 Asws=11.3 (4.6) z: 0 n=2 Asws=11.3 (7.5) y: 1 n=2 Asws=11.3 (0.1) z: 1 n=2 Asws=11.3 (0.1) y: 2 n=2 Asws=11.3 (4.6) z: 2 n=2 Asws=11.3 (4.6) z: 0 n=2 Asws=11.3 (4.6)

The results appear with respect to:

- Region (for cross-section with more than one critical region, e.g. Γ , Π)
- Direction (y, z)
- Height (0: critical zone top, 1: no critical zone, 2: critical zone bottom)

In the cross-section's detailing a marked area in Y or Z and a horizontal line, that indicates the direction Y or Z, respectively, appear, to distinguish easily the areas and directions and read the checks' results without difficulty.

You can repeat the design checks more than once, by modifying the table's data and changing the diameter Φ , distance s and number of sections n.

Area		Φ	s	n	N	di 1	di2	Vd
1	у	8	10	6	0	100.00	30.00	0.028
1	z	8	10	2	0	100.00	30.00	0.022
2	z	8	10	5	0	80.00	30.00	0.022
2	у	8	10	2	0	80.00	30.00	0.028

Shear Resistance Check

Just remember to activate the following checkbox and when you define the stirrups, go back to "Stirrups" and make the changes to update the drawing and the calculations' print-out as well.

9.3 Confinement Verification:

. Activate the following checkbox Confinemnt Verification and

. Select the command "Auto" Auto to update the following table, including the changes you have already made.

Area		Ф	s	n	N	di 1	di2	Vd
1	у	8	10	6	0	100.00	30.00	0.028
1	z	8	10	2	0	100.00	30.00	0.022
2	z	8	10	5	0	80.00	30.00	0.022
2	у	8	10	2	0	80.00	30.00	0.028

The diameter Φ , the distance s, the number of sections n, the cross-section's dimensions d₁, d₂ and the value of the relative axial force v_d by region and direction are automatically updated. The values in "N" column are the numbers of the vertices of the stirrups (stirrups – nodes) that represent the number of the confined main rebar. To fill in the column "N" follow the procedure:

. Select one by one the regions in each direction

Area		Ф	s	n	N	di 1	di2	Vd
1	у	8	10	6	0	100.00	30.00	0.028
1	z	8	10	2	0	100.00	30.00	0.022
2	z	8	10	5	0	80.00	30.00	0.022
2	у	8	10	2	0	80.00	30.00	0.028

In the cross-section's detailing a marked area in Y or Z direction appears to be distinguished easily.

. Left click to show the rebar of the region confined by stirrups, regardless of the direction, starting from a rebar and ending in the same rebar.

Area		Ф	s	n	N	di 1	di2	Vd
1	у	8	10	6	12	100.00	30.00	0.028
1	z	8	10	2	0	100.00	30.00	0.022
2	z	8	10	5	0	80.00	30.00	0.022
2	у	8	10	2	0	80.00	30.00	0.028

Repeat the process on the other direction, showing the same rebar. Alternatively, if you select both directions with the "Shift" button and define the vertices once, then both values of N will be filled in automatically.

Follow the same process for the second region, to complete the "N" column in total. The column "n" is already completed.

Area		Ф	s	n	N	di 1	di2	Vd
1	у	8	10	6	12	100.00	30.00	0.028
1	z	8	10	2	12	100.00	30.00	0.022
2	z	8	10	5	10	80.00	30.00	0.022
2	у	8	10	2	10	80.00	30.00	0.028

Now you have two options:

- 1. Perform the design check "Adequate Confinement check" for each region and direction.
- 2. Calculate the distance between the stirrups with the diameter Φ fixed, in order the confinement adequacy check to be satisfied.

Both cases in detail:

1. To check the adequacy of the confinement:

You can repeat the design checks more than once, by modifying the table's data and changing the diameter Φ , distance s and number of sections n.

When you define the stirrups, go back to "Stirrups" and make the changes to update the drawing and the calculations' print-out.

2. To calculate the distance between the stirrups with the diameter Φ fixed, in order, the confinement adequacy check to be satisfied.

. Type the new diameter Φ

Area		Ф	s	n	N	di 1	di2	Vd
1	у	12	10	6	12	100.00	30.00	0.028
1	z	8	10	2	12	100.00	30.00	0.022
2	z	8	10	5	10	80.00	30.00	0.022
2	у	8	10	2	10	80.00	30.00	0.028

. Define the maximum distance as an upper limit to start the calculation process Max Distance (cm) 50

. Select the command "New Distance Calculation" New Distance Calculation and the program calculates the distances and fills in the column "s".

Area		Ф	s	n	N	di 1	di2	Vd
1	у	12	44	6	12	100.00	30.00	0.028
1	z	8	21	2	12	100.00	30.00	0.022
2	z	8	20	5	10	80.00	30.00	0.022
2	у	8	21	2	10	80.00	30.00	0.028

If you activate the following checkbox Based in Regulations max distances then during the calculation of the distances that satisfy the design checks, the program will take into consideration the maximum distances proposed in the Design Regulations, too.

Always remember, when you define the stirrups, to go back to "Stirrups" and make the changes to update the drawing and the calculations' print-out.

3. M-N Calculation

The "Column's Editor" tool enables the calculation of the interaction curves N-M and the interaction surfaces N-Mx-Mz as well.

+ M-N

Copy Paste

OK Cancel

Recalculation

For the interaction curves/surfaces click the following button .

• Calculation of the interaction curves/surfaces M-N

It's about the calculation and the display of the interaction surface of the axial load and the ultimate bending moment. It depends on the geometry of the cross-section, the material, and the steel reinforcement. It is a 3D surface and represents the envelope of the ultimate biaxial bending resistance and the axial load (My, Mz, N). Also, the strain-stress relationship diagrams for the steel and concrete as well as the moment – curvature diagram of the cross-section are displayed as well.

B. COLUMNS-WALLS REINFORCEMENT

SCADA Pro has integrated the tools for the needs of rehabilitation and reinforcement of the columns and walls, as predicted by the regulation of interventions (KANEPE)

As well as all the checks and procedures necessary for them

Regarding Confinement

Regarding **Confinement,** it is noted that it has been integrated for all existing types of column reinforcement as well as the steel cage in the program. Increase in concrete strength and fracture deformation occurs for all types of reinforcement (stirrups, plates, and FRPs).

The new values are displayed on the page with the data of the existing section, in the printout of reinforcement.

Confinement works only in columns (not walls) and requires enclosed reinforcement on all sides. Regarding walls' confinement, it is taken into account only in case of reinforcement with FRPs or plates.

▲ The increased values of strength and deformation are displayed on the first page of the reinforcement printout.

10. Rehabilitation of columns-walls

The "Rehabilitation" section contains tools for the rehabilitation of the columns according to the Code of Structural Interventions.

Column Editor			- D X
Rehabitation		🔍 🔍 🕀 🖑 🐔 🎽	🕻 🕸 🕸 🤹 🖬 🕼
🐹 Jacketing	- Concrete Repair	o _{re}	
FRP	Corrosion Protection Materials used on the surface that act as corrosion inhibitors for the steel reinforcement of the reinforced concrete structures and applied by impregnation. Concrete Repair		
	Repairing mortars for the structural rehabilitation of concrete members.		└┼┼┼┤ ╺╛╶┇╶┇ ╶╽
	rehabilitation of the concrete cracking, welded and / or infilled.	+++	· · · · · · · · · · · · · · · · · · ·
	Printout Add Delete	110	
< > > Recalculation	Protection	a a	
	Fire Protection Layers Fire resistant mortars applied by using epoxy resins.	40 K	
Y = 771.00 + M-N -	Concrete layers or coating Repairing mortars of one or more components for final protective coating.	○ 13186/11.48 [R3+1.26] ○ 13186/11.48 [R3+1.26] ○ 1386/11.48 [R1+6.76] ○ 1886/11.48 [R1+6.76] ○ 1896/11.48 [R1+6.76] ○ 1896/11.48 [R1+6.76]	
Copy Paste	Paint Protection Plastic-elastic paint protection for concrete and coatings	163 2 2 2 2 2 2 2 2 2	44
Cancel	EM4C Sika		
		L (m) = 3 - 2 4	
The user ca	In select one of the three rehabilita	tion methods by activat	ing the corresponding
		Add	
checkbox. T	Then, select the command "Add"	and the rel	nabilitation methods will
Select the c	command "Delete", to exclude the	rehabilitation methods f	from the report.
Further rehab compo mater to colo	ermore, in SCADA Pro, the tecl ilitation method are enriched with anies' EM4C and Sika. The user he ials by pressing the corresponding umn reinforcement.	nniques and the mate the corresponding mate as direct access to the button, which appears i	erial considered in each erial and techniques of the library of EM4C and Sika in the dialog boxes related
Select one	command EM4C Sika	, and then select the	appropriate material for
each rehab analytical d automatica	ilitation method. Also, select the fo lescription of the material propertie Ily downloaded.	llowing button ? and as as well as information	d a PDF file, with an related to its use, is

11. Concrete jacket for columns-walls

The section "Jacket" contains tools for the reinforcement of the columns according to the Code of Structural Interventions.

According to the Code of Structural Interventions, the concrete jacket is a uniform concrete layer that surrounds the column cross-section in a closed form. Otherwise, when the concrete layer is applied to some of the edges of the cross-section, then the reinforcing method is considered as additional concrete layers.

📧 Column Edito	r	×	
Rehabilitation		① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ① ①	
FRP FRP Protection	Placement Cover (mm) Thickness (cm) D Thickness (cm) D Thickness (cm) D Cross-section Materials Concrete : C20/25 Steel (Main) :B500C EM4C Bolts - Hangers :B500C Steel (Stirrups) :B500C Sika Design Checks Performance evel A-DI		
< > Recalculation	Side selection Anchorage length (cm) Total calculation Friction mechanism participation percentage(%) Suspensors Strrups Diameter (mm) 14 Number 0 Dowels 0 Diameter (mm) 14		
+ M-N - Copy Paste OK Cancel	Cover (mm) Per (cm) Image: Alternately Bottom Top Lateral Anchorage length (mm) Image: Alternately Image: Ima	(13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	

Define all "Materials" (concrete jacket, main steel reinforcement, stirrups)

Materials		
Concrete : C20/25	Steel (Main) :B500C	EM4C
Bolts - Hangers :B500C	Steel (Stirrups) :B500C	Sika

Conc	rete ×	Steel (Stir	rups) ×
Type C Constants Fck (Mpa) γcu γcs Fctm (Mpa)	20/25 V 20 1.5 1 2.2	Type E Constants Es (Gpa) Fyk (Mpa) γsu	500C V 200 500 1.15
TRd (Mpa)	0.25	Max Deforma	tions 0.02
ες (Ν,Μ) ες (Ν)	0.0035	ОК	Cancel
ОК	Cancel		

▲ Furthermore, in SCADA Pro, the techniques and the material considered in each rehabilitation method are enriched with the corresponding material and techniques of the companies' EM4C and Sika. The user has direct access to the library of EM4C and Sika materials by pressing the corresponding button, which appears in the dialog boxes related to column reinforcement.

 Define the "Cover" and "Thickness" of the concrete layer and apply either on the total of the cross-section as a jacket or a side by clicking the button "Side" and then selecting with the mouse the corresponding side. In this way, you can define different thickness per side. The cover is applied to all sides of the cross-sections.

The minimum "Thickness" of the jacket is modified concerning the type of the concrete (standard, gunite, special concrete).

When the thickness per side defers, then you select the command "Side" and pick with the mouse the corresponding side. If the thickness is the same in the total cross-section, you select the button "Total cross-section".

Furthermore, there is the option to insert U-shaped Jacket, typing the respective Thickness and Length.

2. Insert the steel reinforcement of the jacket with the commands "Main Reinforcement" and "Stirrups" from the list (Chapter B "Column's Detailing").

6. Select the appropriate "Performance level"; Damage Limitation-DL (Immediate Occupancy), Significant Damage-SD (Life Safety), Near Collapse-NC (Collapse Prevention).

Friction mechanism

participation percentage(%) 0

- 7. The compressive force F_{cm} of the jacket is safely transferred as a shear force along the interface through the three following mechanisms: Anchorage length (cm) 0
 - friction -
 - welded suspensors
 - _ dowels

and are activated within an available assemblage length "uo". The shear resistance along the interface is calculated considering the friction, welded suspensors, and dowels mechanisms.

In SCADA Pro the critical mechanism for the transfer of the compressive force is the dowels. The friction and the welded suspensors are optional and the user decides if they will be taken into consideration in the calculation of the shear resistance along the interface.

For the welded suspensors define the diameter, the number and the spacing h_s between the new and the existing main steel reinforcement.

Suspens	sors				
Diame	ter (m	n)	14	۷	
Number	0	hs	(mm)	0	

For the friction mechanism you have to define one of the following parameters:

- The assemblage length and then the program calculates the resistance considering the friction coefficient μ =1.0.
- The percentage (%) of the compressive force that will be transferred through the friction mechanism.

In case that the friction and the welded suspensors mechanisms are not taken into consideration, the total compressive force is transferred through the dowels.

8. In the field "Dowels" define the diameter and then the program calculates the number and the spacing of the dowels, as well as the cover in the top, bottom and in both sides:

Dowels	
Diameter (mm) 14 🗸	Number 18 Series 1
Cover (mm) Bottom Top Lateral	Per (cm) 16.74 Alternately
84 70 42	Anchorage length (mm) 84

9. In the "Design checks" field, select the following:

Design Checks
Side selection
Total calculation

- The calculation in total: Select this command and the checks will be performed in all sides of the cross-section (according to Code of Structural Interventions) and the corresponding results will be presented per side.

- Side selection: Select the side for the checks to be performed per side. Show the corresponding side with the mouse, define the diameter of the dowels and click the button "Calculation". The program calculates the dowels' parameters automatically for the corresponding side.

The command "Recheck" will be activated in a future version of the software.

The results of the design checks are presented at the bottom of the dialog box:

Mz = 63.36 -138.27 y: Vrd,r=753.98 Vrm=603.19 y: (Vrd,r+Vrm)/yR=1043.97 z: Vrd,r=282.74 Vrm=226.19

At the beginning of the design checks, the inertial forces in the top and the bottom of the column, appear.

Mx = -0.71 -0.71 My = 14.38 -42.38 Mz = -6.83 15.24

Also, the shear resistance per direction, according to the Code of Structural Interventions, is presented.

In the end, the thickness of the concrete layer for the corresponding side, as well as all the parameters of the dowels, are presented.

The program calculates the appropriate number of dowels by comparing the number of dowels based on the value of the compression force and the minimum number of dowels based on the jacket's area and keeps the greater.

In the previous example, the minimum number of dowels is 13, while the calculated one is 18, which is the final number of dowels.

Finally, select the "Report" command to add the design checks' results in the corresponding chapter of the report.

The command "Recheck" will be activated in the future version for the software.

The analytical printout of the results is located in the ribbon "Add-ons" in the "Calculations' Printout" command.

Basic Modeling View Tools Greek Greek Languages Parameters Basic Modeling View Tools Concrete Steel Steel Bill of Materials	Slabs Loads Slabs Loads Eeel calculations Print Calculation's Printc	Addons Output Tree Property View	
Available Chapters General Analysis Columns Level 0 Level 1 Second	Printout Jacketing Lev:1	Number of Pages :	Building Data Move Up Move Down Delete Delete All Insert File Error Correction Format Page Paging Paging Export Printout Print Project Report Save Cancel

Select the section "Retrofitting methods" and select a level or levels. The corresponding results of the design checks, as well as the calculated number of dowels per level, will be recorded.

12. FRPs – laminates of columns-walls

The steel laminates or the fiber reinforcing polymers (FRPs) is a reinforcing method that results in the increase of the bending resistance and the application of confinement reinforcement. The laminates are generally used as additional tensile reinforcement due to the inadequate existing steel reinforcement. The laminates strengthen the tension zone against flexural failure.

▲ A reinforced concrete cross-section can be strengthened by bending with steel laminates or FRP fabrics. This reinforcing method is applied mainly in beams and slabs and rarely in columns because it is not allowed to be applied in regions under compression. As an exception, it can be applied in regions under compression when that regions resist against another type of failures, e.g. local buckling resistance of the rebar by applying confinement.

Column Editor				— 🗆 X
Rehabilitation			1 🕷 🗙 🕸 1	🙀 🕸 🛸 Info
Jacketing Reinforcing Method Steel Plates FRP Material Steel (Main) :S275(Fe430)	EM4C Sika		*** *	
Performance Level Acces	nal (Usual) V			
Placement Length (cm) 0 Thickness Width (cm) 0 Anchorage (cm)	0 Default 0 Side *	0 ²⁰ 1	, <u></u>	
Number of Layers 0 Strips	s' Data eguential Placement		+ '	
Side Widi Recalculation Cross-section Space	ith (cm) 0 acing (cm) 0	3		+
Y = 771.00 Printout	Automatic Thickness Calculation	0 13369/11.06 [k	J	
+ M-N - Copy		100-1000000000000000000000000000000000		
Paste OK		: 		
Cancel		1388//11.60 [N 0 (1888/78.60 [N 0 (1887/78.60 [N 0 (1897/78.60 [N 1 (10)-1.5	2-1,26] Nam+0,96] 1-6,36] ≺	

1. Select the reinforcing method; Steel Laminates or FRPs (Fiber reinforced polymers)

Reinforcing Method	Steel Plates		~
Material	Steel Plates Fiber Reinforced Polymers		
Steel (Main) +5775	(FedRin)	NKA	_

2. Select the Material	Material Steel (Main) :S275(Fe430) X Type S275(Fe430 \vee Constants Es (Gpa) 210 Fyk (Mpa) 275 ysu 1.15 yss 1 Max Deformations es 0K Cancel
Furthermore, in S rehabilitation mether companies' EM4C materials by pressing to column reinforce	SCADA Pro, the techniques and the material considered in each nod are enriched with the corresponding material and techniques of the and Sika. The user has direct access to the library of EM4C and Sika ing the corresponding button, which appears in the dialog boxes related ement.
Select one command each rehabilitation meth analytical description of automatically download 3. Select the Per	EM4C Sika , and then select the appropriate material for nod. Also, select the following button? and a PDF file, with an the material properties as well as information related to its use, is led.
Performance Level	Accessibility (Table S 4.3)
	Normai (Usuai)
4. In the Placem	ent field, select:
Placement	
Length (cm) 0 Thick	mess 0 Default
Width (cm) 0 Anch	iorage (cm) 0 Side *
Number of Layers 0	Strips' Data
Default: This command the length of the column of the laminate to be fill automatically. The widtl	is used so that n and the width led in h of the laminate
is equal to the width of corresponding side of the	the Anchorage (cm) v side

Afterwards, you set the value of the thickness and the length of the laminate in the corresponding fields with two ways:

- a. For each side: Select the button "Side" and show with the mouse the corresponding side of the column.
- b. For the total cross-section: Select the button "Cross-section".

The "Default" command sets the data for all sides of the column. If you want to import laminates in all sides with the same thickness, you enter, at first, the thickness and the anchorage length. Then, click the button "Cross-section".

If you want afterwards to change the thickness of the laminates of the cross-section in total, set a new value for the thickness and press the button "Default" without pressing again the button "Total cross-section". The existing laminates change considering the new thickness value.

Side data: This command is used to show the number of the side selected with the mouse and the data of the reinforcing method applied in the corresponding side.

Layers: In this field set the number of the layers.

Strips' Data		
🗔 Seguential Place	ement	
Width (cm)	0	
Spacing (cm)	0	

The placement of the laminates can be uniform or in strips; continuous or discontinuous with intermediate spacing.

Activate the "Continuous Formulation" in the "Strips' data" field and define the width of the laminate. For considering the discontinuous formulation, deactivate the previous checkbox and define the spacing between the strips.

Activate the checkbox "No participation in bending" No bending participation and the laminate in the corresponding side will not participate in the bending resistance of the reinforced cross-

Printout		
Checks	1/1	Automatic Thickness Calculation
2.906) <=2/3Mrd'(8 5.161) <=2/3Mrd'(-6 99.180) <=2/3Mrd'(-7 588) < Vrd,c(81.512 7.362) < Vrd,c(81.512 7.362) < Vrd,c(81.52 588) < Vrd,c(79.824 7.362) < Vrd,c(79.83	37.976 5.227) -87.09 5.345) ()(1): 12)(1) ()(1): 24)(1)	
	Checks '2.906) <=2/3Mrd'(8 5.161) <=2/3Mrd'(-6 99.180) <=2/3Mrd'(-6 99.180) <=2/3Mrd'(-6 588) < Vrd,c(81.512 7.362) < Vrd,c(81.512 7.362) < Vrd,c(79.824 7.362) < Vrd,c(79.824 7.362) < Vrd,c(79.834 7.362)	Checks 1/1 '2.906) <=2/3Mrd'(87.976 5.161) <=2/3Mrd'(-6.227) 99.180) <=2/3Mrd'(-6.227) 99.180) <=2/3Mrd'(-6.345) 588) < Vrd,c(81.512)(1) : 7.362) < Vrd,c(81.512)(1) : 7.362) < Vrd,c(79.824)(1) : 7.362) < Vrd,c(79.824)(1) :

By selecting the "Design checks" command, the program calculates and presents the minimum thickness t_1 and t_2 per side, in the checks' results with respect to the cross-section of the laminate and the type of the material. Then, the thickness t_1 and t_2 are calculated again with reference to the minimum values of t_1 and t_2 and the design checks have to be repeated. Since the calculation of the thickness t_1 and t_2 is an iterative method, select the button "Automatic calculation of the thickness".

Then the program automatically calculates the final minimum thickness t_2 , which is presented in the window at the bottom of the dialog box. Then, you have to set this calculated value in the corresponding field and repeat the final design checks.

The structural adequacy of the laminate or the FRP is reached with the increase of the thickness or the number of the layers.

In the section on the results of the design checks first, the bending resistance checks of the cross-section and the shear resistance check by direction X or Z according to the Code of Structural Interventions are presented.

Furthermore, the results and the value of the ΔM parameter are presented for each side; the difference between the design bending moment and the moment resistance of the initial cross-section is calculated. If the parameter ΔM is positive (the initial cross-section should be reinforced) the thickness values t_1 and t_2 are calculated as described above. The thickness t is defined by the user.

```
\begin{array}{l} \Delta M \!=\! 45.86 \\ \sigma j d1 = 293995.859 \\ \sigma j d2 = 447795.526 \\ min T(mm): t \!=\! 0.400 \ t1 \!=\! 0.693 \ t2 \!=\! 0.455 \end{array}
```

In the previous example, the thickness t is less than the appropriate t₁ και t₂. So the thickness t must be equal to 0.7. If you preserve the thickness value t=0.4 then should be used two layers. The corresponding results are presented below:

```
\Delta M=45.86

\sigma d1 = 293995.859

\sigma d2 = 316639.253

min T(mm) : t=0.400 t1=0.347 t2=0.322
```

So, if you use two layers, then a minimum thickness t=0.35 is needed.

If $\Delta M=0$, then there is no need for reinforcement, so $t_1=t_2=0$.

Finally, the shear resistance check, according to EC8, is presented.

Select the "Printout" command to add the results in the corresponding chapter of the report of the study.

13. Protection of columns-walls

The section "Protection" contains the tools for the application of protection methods in columns.

Column Editor	· · · · · · · · · · · · · · · · · · ·		- D X
Rehabilitatior		0.	
Jacketing			
	Concrete Repair		
Protection	Corrosion Protection Materials used on the surface that act as corrosion inhibitors for the steel reinforcement of the reinforced		
	concrete structures and applied by impregnation.	<u> </u>	
	Concrete kepair Repairing mortars for the structural rehabilitation of		
	concrete members.		1 ++ ++ 1.
	Cementitious binding materials for the structural	o* 5 * *	
	infilled.	++	
	EM4C Sika		
	Printout	151	
>	Add Delete		
ecalculation	Protection	22 B	
	Fire resistant mortars applied by using epoxy resins.		
(= 771.00	Concrete layers or coating	○ 13288/11.00 [82-1.26]	
M-N -	Repairing mortars of one or more components for final protective coating.	○ (104/20.66 (hum-0.96) ○ 1008/11.66 (h1-0.76) L(m)-1.91	
Сору	Paint Protection	166	$\perp_{\gamma}\perp$
Paste	Plastic-elastic paint protection for concrete and coatings		
ОК			
Cancel	EM4C Sika	0 13268/13.66 (b2-1.26) (1488/20.66 (b2-1.26)	
		L(m)-1.24	
ne user ca neckbox. ⁻ iethods w <i>Furthi</i> <i>rehab</i>	an select one of the three rehabilit Then, select the "Add" command vill be included in the final report. ermore, in SCADA Pro, the te vilitation method are enriched with	chniques and the mathing mathi	ting the corresponding and the rehabilitation terial considered in each terial and techniques of the
comp mater to col	anies' EM4C and Sika. The user rials by pressing the corresponding umn reinforcement.	has direct access to the g button, which appears	e library of EM4C and Siko in the dialog boxes related
elect one	command EM4C Sika	, and then select the	e appropriate material for
ach rabab	vilitation mothod Also salast the	following button ?	ad a RDE file, with an
ach renac nalytical c	description of the material propert	ties as well as informatio	n related to its use, is
utomatica	ally downloaded.		

IMPORTANT NOTE:

The reinforced parts of the columns and walls are pointed out on the screen:

- 1. In plan view: The node is colored yellow
- 2. In 3D view: The structural element is colored yellow.

Also, according to the type of the reinforcing method, an indicative letter appears of the reinforcing method:

- Concrete Jacket: "J"
- Laminate: "L"
- ✤ FRP: "F"
- Prerequisite for the appearance of the label is that you have first selected the "Report" button in the dialog box of the corresponding column reinforcing method.

Do shock	
	1
Report	

14. Steel Cage

The Steel Cage contains the tools necessary for reinforcing the columns and the walls, as described in Interventions Regulation (KAN.EΠE). The contribution of the cage lies in the confinement as well as the shear strength.

	Steel ×
	Type S275(Fe430 V
	Es (Gpa) 210
	Fyk (Mpa) 275
	γsu 1.15
	γss 1
	Max Deformations
	ES 0.02
1. Define Steel Materia	OK Cancel
2. Choose Performance	e Level and Accessibility
Performance level	Accessibility (Table.Σ4.3)
A - DL 🗸 🗸	Normal (Usual)
A - DI A. B or C	for inelastic analysis
B - SD F - NC ****** fc	or elastic analyzes of KAN.EΠE
3. In the field Steel Plat	e, define the height and the thickness of the plate, the distance
between them as we	ell as the anchoring.
Steel Plate	
h (cm) 10 t ((mm) 1
distance (cm)	20
Anchoring (cm)	20
4. In the field Dimension considered as square	ons of Ange profile, define the dimension of angle profile which is e edged equal, as well as its thickness.
Dimensions of Ange pr	ofile
b (cm) 5 t	(mm) 5
5. By choosing Checks,	the program calculates and displays the results. At the beginning
of the checks, the be	ending sufficiency check and the shear adequacy check of the

concrete are shown. The shear check of the reinforced element is then displayed.

	Checks	1/1	
My : Mz :	Msd(78.750) <=2 Msd(-35.931) <=	2/3Mrd'(82.284)(1) :: Satisfied 2/3Mrd'(-37.543)(1): Satisfied	^
Vy: Vs Vz: Vs Vy: Vs	sd(-17.647) < Vro sd(-73.236) < Vro sd(-17.647) < Vro	d,c(101.139)(1) : Satisfied d,c(84.676)(1) : : Satisfied d,c(98.591)(1) : Satisfied	
Vz: Vs	sd(-73.236) < Vro	d,c(81.896)(1) : Satisfied	
SHEA	R VERIFICATIO	N #TO (aid1−1304 35 aid2−-1 #	n ~
<			>

NOTES:

- ▲ The increased values of strength and deformation are displayed on the first page of the reinforcement printout.
- Also, in case of a steel cage in the second page of the reinforcement printout the dimensions of the angular are displayed.
- **L** Finally, the dimensions of the plates are displayed in the next table in the shear check.

