

INSTRUKCJA OBSŁUGI A. DETALOWANIE BELEK

SPIS TREŚCI

A. BELKI	3
1. Geometia	6
2. Główne zbrojenie w przęśle	9
3. Zbrojenie w podporze	11
4. Strzemiona	13
5. Dodatki	14
6. Kontrola rys	16
7. Wykresy	17
B. METODY UMOCNIEŃ	19
1. DODATKOWE WARSTWY BETONU – PŁASZCZ BET.	21
2. STALOWE LAMINATY - FRP	24

A. BELKI

Nowy edytor belek - Szczegóły w SCADA Pro wchodzi w skład innowacyjnej grupy narzędzi, która pomaga w zarządzaniu projektowaniem belek.

Używając polecenia Szczegóły możesz edytować, modyfikować i określać przekroje belek i zbrojenia. Użytkownik ma też możliwość wyświetlania wykresów sił wewnętrznych dla każdego z obciążeń, ich kombinacji lub zastosowanej techniki zbrojenia.

Jest to zintegrowane narzędzie, elastyczne, proste i bardzo przydatne, które oszczędza dużo czasu.

A Warunkiem uzyskania dostępu do Szczegółów jest uprzednie zwymiarowanie belek.

Są dwa sposoby aby otworzyć okno narzędzia Szczegóły:

1) Otwórz Projektowanie elementu >> Belki >> Wyniki >> Szczegóły

2) Po wybraniu zakładki **Projektowanie elementu**, kliknij prawym przyciskiem myszy w belkę w interfejsie a otworzy się poniższa lista:

Wybierz polecenie, aby otworzyć następujące okno dialogowe:

						Beams Editor					
) 🗨 🗨	2 🖑	× 4			5					ОК	Cano
			₽8/1 6 Σ₽8/			∆4 352 \$ 8/10		۵5 ۵248/1010248/584			
			huut		1					F	EINF
	G	.50 1.2	25	50 0.	.50	3.56	0.50	0.50 1.10	0.50		
1	90			40				2.10	40	At a start of the	Dian Bara
				0.40.2							
								(2) 2014 L=3.39		3	14
									o.42		
		(4) 4014 I								We	ight per s tal Weight
										Va Ge	tal weight ste 5.00% neral Tota
Geometry Span Main Re	inforcement	Support Re	inforceme	nt Stirru	ps Additi	onal Crack control Diagra	ms Retrofittir	a method			
General Data		Span								Supports	
Number of Spans	3	Number	1	Length	2.25	Critical Length Left (m)	0.5	Critcal Length Right (m) 0.5	Width (cn	1)
Cover (mm)	25	Name	3	Lsp.(cm)	225	Reinforcement Pattern	۱ <u> </u>			Right	40
		b(cm)	25	h0(cm	0					. agin	
		h(cm)	50	h1(cm	0	1.90m	B3 (67)	0.40m			
ho											

Okno zatytułowane **Edytor belek** zawiera na górze interfejs cad, ze wszystkimi szczegółami stali zbrojeniowej i tabelą zbrojenia stalowego, a także wykresami sił wewnętrznych, dostosowanego do wprowadzonych zmian w parametrach. Pola parametrów mieszczą się w dolnej części okna składającego się z 8 zakładkach, które zostały szczegółowo omówione w kolejnych rozdziałach:

W poniższych rozdziałach zakładki zostaną opisane jedna po drugiej.

Poziomy pasek nad interfejsem CAD używany jest do zarządzania rysunkiem. Szczegóły:

UWAGA:

ڬ : przyciski umożliwiające odpowiednio przybliżenie, oddalenie, oddalenie

całości .

I Przycisk do przesuwania obrazu Pan.

: Przyciski są strzałkami do przesuwania rysunku w różnych kierunkach.

CANCE : Naciśnij przycisk **OK**, aby zapisać zmiany wprowadzone w edytorze i wrócić do interfejsu SCADA PRO.

Naciśnij przycisk Anuluj, aby wrócić do interfejsu SCADA PRO bez zapisywania zmian wprowadzonych w edytorze.

1. Geometria

Beams Editor	- 🗆 ×										
	OK Cancel										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	REINFOR 1 14 2 14 3 14 4 3 4 34 5 14 6 14 7 14 7 14 8 14 9 14 14 1 7 14 7 14 8 14 9 14 14 1 7 14 8 14 9 14 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 14 2 <tr td=""> 2</tr> <tr><td>Geometry Span Main Reinforcement Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method General Data Number of Spans 3 Span Number 1 Length 2.25 Critical Length Left (m) 0.5 Critical Length Right (m) 0.5 Cover (mm) 25 Name 3 Lsp.(cm) 225 Reinforcement Pattern Main b(cm) 25 h0(cm) 0 1 1.50m 83 (67) 0.40m</td><td>Nidth (cm) Left 190 Right 40</td></tr> <tr><td>Pierwsza zakładka "Edytor belek" odnosi się do geometrii i zawiera informacje dotyczące przęseł i podpór ciągłości belek oraz parametry ogólne. General Data Number of Spa Cover (mm)</td><td>ns 3 25</td></tr> <tr><td>Ogólne dane odnoszą się do całej ciągłości belki i zawierają: (i) ilość przęseł (bez możliwości modyfikacji) oraz (ii) otulinę w mm.</td><td>h1 v</td></tr> <tr><td>General Data Span Number of Spans 3 Cover (mm) 25 Mame 3 Lsp.(cm) 225 b(cm) 25 h(cm) 50 h1(cm) 0</td><td>Supports Width (cm) Left 190 Right 40</td></tr> <tr><td>Obszary przęsła i podpory mogą być dostosowywane w odpowiednich po możliwość graficznego wyboru przęsła poprzez kliknięcie lewym klawiszem mysz rysunku lub bezpośrednio poprzez wpisanie numeru belki w pole Numer</td><td>lach. Istnieje zy w belkę na</td></tr>	Geometry Span Main Reinforcement Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method General Data Number of Spans 3 Span Number 1 Length 2.25 Critical Length Left (m) 0.5 Critical Length Right (m) 0.5 Cover (mm) 25 Name 3 Lsp.(cm) 225 Reinforcement Pattern Main b(cm) 25 h0(cm) 0 1 1.50m 83 (67) 0.40m	Nidth (cm) Left 190 Right 40	Pierwsza zakładka "Edytor belek" odnosi się do geometrii i zawiera informacje dotyczące przęseł i podpór ciągłości belek oraz parametry ogólne. General Data Number of Spa Cover (mm)	ns 3 25	Ogólne dane odnoszą się do całej ciągłości belki i zawierają: (i) ilość przęseł (bez możliwości modyfikacji) oraz (ii) otulinę w mm.	h1 v	General Data Span Number of Spans 3 Cover (mm) 25 Mame 3 Lsp.(cm) 225 b(cm) 25 h(cm) 50 h1(cm) 0	Supports Width (cm) Left 190 Right 40	Obszary przęsła i podpory mogą być dostosowywane w odpowiednich po możliwość graficznego wyboru przęsła poprzez kliknięcie lewym klawiszem mysz rysunku lub bezpośrednio poprzez wpisanie numeru belki w pole Numer	lach. Istnieje zy w belkę na
Geometry Span Main Reinforcement Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method General Data Number of Spans 3 Span Number 1 Length 2.25 Critical Length Left (m) 0.5 Critical Length Right (m) 0.5 Cover (mm) 25 Name 3 Lsp.(cm) 225 Reinforcement Pattern Main b(cm) 25 h0(cm) 0 1 1.50m 83 (67) 0.40m	Nidth (cm) Left 190 Right 40										
Pierwsza zakładka "Edytor belek" odnosi się do geometrii i zawiera informacje dotyczące przęseł i podpór ciągłości belek oraz parametry ogólne. General Data Number of Spa Cover (mm)	ns 3 25										
Ogólne dane odnoszą się do całej ciągłości belki i zawierają: (i) ilość przęseł (bez możliwości modyfikacji) oraz (ii) otulinę w mm.	h1 v										
General Data Span Number of Spans 3 Cover (mm) 25 Mame 3 Lsp.(cm) 225 b(cm) 25 h(cm) 50 h1(cm) 0	Supports Width (cm) Left 190 Right 40										
Obszary przęsła i podpory mogą być dostosowywane w odpowiednich po możliwość graficznego wyboru przęsła poprzez kliknięcie lewym klawiszem mysz rysunku lub bezpośrednio poprzez wpisanie numeru belki w pole Numer	lach. Istnieje zy w belkę na										

Wybierz pierwsze przęsło. W wybranym przęśle główne zbrojenie i symbol belki podświetli się na czerwono.

Obszar **przęsła** pokazany jest po prawej stronie z wypełnionymi danymi dla belki. Można modyfikować wymiary b, h przekroju belki, jak również jej długość i wysokość, zgodnie z poniższym projektem.

Wszelkie modyfikacje dotyczą wyłącznie projektowania, nie są związane z modelem obliczeniowym.

Obszar **przęsło** zawiera również długości krytyczne, które można edytować, rysunek oraz **wzór zbrojenia**, który aktualizuje się automatycznie.

Reinforcement Pattern	2
0.40m B9.(27) 0.40m	

Zauważ na poniższym rysunku, że górne pręty, pochodzące z poszczególnych przęseł, wchodzą w odpowiednie przęsła przeciwnie do prętów na dole.

To oznacza, że w obliczeniach zbrojenia podpory, program rozważy dwa górne pręty w zbrojeniu lewej i prawej podpory, a dla zbrojenia przęsła wykorzysta jeden pręt dolny.

Jeśli chcesz uwzględnić dolne pręty dla obydwu rozpiętości, wybierz żółtą linie i kliknij lewym klawiszem myszy (aby wybrać lewą żółtą linią, wybierz lewe przęsło, aby wybrać prawą żółtą linię, wybierz prawe przęsło) aby je wydłużyć. Program

uwzględni obydwa pręty, w górnym i dolnym zbrojeniu.

Jeśli chcesz wykorzystać pręty tylko jednego przęsła, ponownie wybierz żółte i białe linie, aby stworzyć układ pokazany na rysunku po lewej stronie.

Supports Width (cm)	
Left	40
Right	40

W polu **Podpory** możesz zmienić szerokość podpór z lewej I prawej strony, pamiętając, że wszystkie modyfikacje geometryczne zmieniają tylko rysunek, ale nie uaktualniają obliczeń modelu matematycznego.

2. Główne zbrojenie przęsła

3								I	Beams Editor						- 🗖	×
5 🔁 🔁	6	3	×	\$	1	1	8							ОК	C	Cancel
1324											Δ2 Σ€8/10					
					1 IIII			\mathbf{m}							R	EIN
	1.2	0 —	+	:	2.20 —	+	-1.	.20 —	1.20		2.20	1.20			mber	amet.
40									40 - 10 . 40				40		Mu	
0.32 62				, 1) 2#14					0.40 1.20						2	14
									0.40	(1) 2#1	4.60 4 T.=6 89		0.32 N		To We To	tal Len ight pe tal Wei
													ó		To Wa Ge	tal Wei ste 5.0 neral T
Geometry Span Main Rein	forcen	nent	Supp	ort Rein	forcement	Stirrup	s Ad	lditiona	l Crack control	Diagrams Retrof	tting method	i				
Number 1		Ва	rs		Anchora Left	ges	1	12		Left Support	Span	Right Support	Anchorages Right		1	12
20νεχεια 11 12 Κόμβος 11 Παρειά Τορ	+	2	φ 1·	4 ¥ ¥	Node	~	37 28	29 0	Required (cm2) Placed (cm2)	6.07 6.16	1.52 3.08	6.07 6.16	Continuity	~	120 0 120 0)
Side Botto	x +	4	φ 1	4 ¥	Node	~	47	26	Required (cm2)	3.04	6.07	3.04	Continuity	~	40 0	
		0	Φ 6	~	90 🗸		28	0	Placed (cm2)	6.16	6.16	6.16	No 🗸		17 0	

Zakładka Główne zbrojenie przęsła zawiera narzędzia do modyfikacji głównego zbrojenia wybranego przęsła.

Możesz wybrać przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na

rysunku lub poprzez wpisanie numeru w następującym polu:

Pole **Bok** zawiera parametry określające ilość i średnicę prętów bocznych, które można modyfikować.

Span

1

		Ва	rs			Left Support	Span	Right Support
-		2	Φ 14	~	Required (cm2)	6.07	1.52	6.07
Тор	οp + 0 φ 6	φ6	٧	Placed (cm2)	6.16	3.08	6.16	
		4	Φ 14	~	Required (cm2)	3.04	6.07	3.04
Bottoi	+	0	φ 6	~	Placed (cm2)	6.16	6.16	6.16

W polu **Pręty** możesz modyfikować ilość i średnicę głównych prętów górnych i dolnych belki. Możesz również odczytać wymaganą oraz umieszczoną ilość zbrojenia.

Wartości w centymetrach kwadratowych umieszczonego w belce zbrojenia aktualizują się automatycznie, według zmian wprowadzanych przez użytkownika. Możesz zmienić ilość i średnicą prętów lub wprowadzić dwa różne pręty górne i dolne.

Ва	rs			Left Support	Span	Right Support
2	Φ 14	Y	Required (cm2)	6.07	1.52	6.07
1	ф 10	~	Placed (cm2)	6.94	3.86	6.94
4	φ 14	~	Required (cm2)	3.04	6.07	3.04
0	Φ6	~	Placed (cm2)	6.16	6.16	6.16

Jeśli powierzchnia zapewnionego zbrojenia jest mniejsza lub równa wymaganej, numer umieszczonego zbrojenia w centymetrach kwadratowych w tabelce powiększy się i podświetli na czerwono.

Zakotwienia

Po określeniu głównego zbrojenia konieczne jest obliczenie długości zakotwień.

Najpierw wybierz z listy rozwijanej granicę rozszerzenia Continuity w zależności od rysunku do obliczenia wartości L₁, osobno dla lewej i prawej podpory.

Następnie wybierz kąt dla obliczeń wartości L_2 (dla boku, $L_2 = 0$), osobno dla lewej i prawej podpory.

Aby obliczyć wartości L₁ i L₂ kliknij w przycisk **L**. Program rozważy wszystkie wprowadzone parametry i umiejscowienie prętów i wypełni następującą tabelę.

	Bars	Anchorages Left l1 l2	Anchorages Right 1 2
Тор	+ 2 Φ 14 ▼ 1 Φ 10 ▼	Node Image: 37 29 90 Image: 37 10	Continuity 20 0 No 14 0
Bottoi	+ 4 Φ 12 ▼ 0 Φ 6 ▼	Node ▼ 40 22 90 ▼ 28 0	Continuity Image: 34 0 No Image: 17 0

	90 💌
1	No
	Vertical
	45
	90
	135
1	180
	-Vertical
	-45
	-90
	-135
	-180

Rysunek i tabela zaktualizują się automatycznie, według wprowadzonych zmian.

13 2 48/	Δ9 /10 12Σ+8/10	132 48/10 13248/1 0	Δ6 10Σ+8/10	13 2 48/10							
					Π	INAF	καΣ	ΟΠΛΙ	ΣΜΟΥ		
							8		ΟΛΠ	ко мн	ΚΟΣ
1		-1.20		1.20	one	131			Φ	Φ	÷
40	3.70	40	3.50	100	Ap U	Δια Ραβ		Mn.K Tep		14	
		9.00				mm		m	m	m	m
0.22	2 70	0 40 20					2	4.99		9.98	
<u> </u>	@ 0111 T-1 00	0.10.20					1	4.73	4.73		
0.34	3.70	0.40.14			3	14	2	4.77		9.54	
	21410 L=4.73				5	10	1	4.87	4.87	20.03	
		0.20.40					4	4.97		19.88	
			(3)2014 L=4.77		Ολι	ко Млко	ç	(m)	9.60	60.03	
					Βαρ	ος ανα τ		(Kg)	0.62	1.21	
					Ολ.	Βαρος /	•	(Kg)	5.93	72.72	
ð. 32	3.70	0.400.40			011	κο Βαροα	ς Οπλιά Β	τμου	(Kg)		71
	(4)4014 L=5.16				Tev	IND EIN	• ολο		(Kg)		81
e ² 34		0.400.28									
	5 1¢10 L=4.87										
		0.400.40									
			6 4014 L=4.97								

3. Zbrojenie podpory

•	Beams Editor		- 🗆 🗙
	k		OK Cancel
A1 13E#8/10 21E#8/10 13	Δ2 248/10 13248/10 21248/10	132+8/10	
		1.20	REIN
40 4.60	4.60	40	Mumb Bars
0.32 4.60 (1) 2014 L=6.89 0.20 4.60	0.40 1.20 0.46 1.20		2 10 3 14 4 14
(2) 1+10 L=6.48	20 0.40 4.60	0.32	Total Len Weight pe Total Wei Total Wei
Geometry Span Main Reinforcement Support Reinforcement Stirrups Ad	itional Crack control Diagrams Retrofitting met	hod	Waste 5.0
Left Support 12 11 11 Top Apιστερά Δι	Li2 Right Support	Left Support Sp	Right pan Support
2014 Left Calc	Right	Required (cm2) 6.07 1.5 Placed (cm2) 6.94 3.8	2 6.07
Bottom 11 12 Rebars 8 0 0 0 6 ~	11 12 Bottom	Required (cm2) 3.04 6.0	7 3.04
	120 0	Placed (cm2) 6.16 6.1	6 6.16

Zakładka Zbrojenie podpory zawiera narzędzia do modyfikacja zbrojenia podpór wybranych belek.

Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu:

Supprt Left	12 11 11 Left Right	Support Right
	Left Right	
Bottom 1010	I1 I2 Bars I1 I2 8 0 1 Φ 10 ▼ 8 0	Bottom
	8 0 0 Φ 6 🕶 8 0	

W zakładce znajdują się dwa pola dla podpór, Lewa podpora i Prawa podpora.

Każda z nich podzielona jest na Górę i Dół, co oznacza odpowiednio górne i dolne zbrojenie podpory i zawiera 3 pola oznaczające umiejscowienie pręta w podporze:

- 1. Wspólne dla dwóch przęseł
- 2. Tylko w lewym przęśle
- 3. Tylko w prawym przęśle

Jeśli nie ma żadnego dodatkowego zbrojenia podpory w określonym miejscu, pole jest puste, w innym wypadku, w polu wyświetla się ilość i średnica pręta w odpowiadającym mu miejscu (na przykład 1000 u góry, wspólnie, dla lewej podpory).

Supprt	.eft	
гор	1Φ10	

	Supprt Left Supprt Right Image: Supprt Left Image: Supprt Right Bottom Image: Supprt Right Image: Supprt Left Image: Supprt Right Bottom Image: Supprt Right Image: Supprt Left Image: Supprt Right Image: Supprt Right Image: Supprt Right Image: Suppr
	lub w prawej podporze:
PRZINLAD.	1. Kliknij w odpowiednią etykietę (np. 10 10 10 10 10 10 10 10 10 10 10 10 10
	 2. Uaktualnij następującą tabelę 2. Uaktualnij następującą tabelę 2. Uaktualnij następującą tabelę 2. Uaktualnij następującą tabelę 3. Możesz również: 2. Zmienić ilość i średnice prętów Wstawić większa ilość prętów
	- Określić długość zakotwienia i kąt $\frac{110}{110}$, automatycznie obliczyć wartości l ₁ and l ₂ na
	lewej i prawej podporze <u>Left Right</u> poprzez użycie przycisku Obl Calc.
	 Kliknij w pustą etykietę (np. Top) i wstaw dodatkowe pręty podpory w określonym miejscu, postępując według opisanej procedury.

W wewnętrznych podporach belek ciągłych, prawa podpora przęsła jest lewą podporą kolejnego przęsła.

Zakładka Strzemiona zawiera użyteczne narzędzia do modyfikacja i dodawania strzemion w przęśle i podporach wybranej belki.

PRZYKŁAD: Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu 2, aby zaktualizować pola:

Zakładka **Dodatki** zawiera narzędzia do modyfikacji lub wstawiania dodatkowych prętów w przęśle i podporach belki z uwagi na nośność na ścinanie i zginanie.

Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu aby zaktualizować pola.

Dodatkowe pręty na ścinanie (pod kątem)

Additional Shear	Rebars (Inclined)		
	Left Support	Span	Right Support
Required cm2	0.00	0.00	0.00
Placed cm2	0.00	0.00	0.00
Rebars	0 ^Φ 6 ∨	0 ^Φ 6 ∨	0 ^Φ 6 ∨

Pole **Dodatkowe pręty na ścinanie** wypełnia się automatycznie zgodnie z wymaganym i umieszczonym zbrojeniem na ścinanie.

Możesz ingerować w te dane poprzez zmianę ilość i średnic dla obydwu podpór i dla przęsła. Ilość umieszczonego zbrojenie aktualizuje się automatycznie.

Additional Shear	Rebars (Inclined)				
Left Support					
Required cm2	0.00				
Placed cm2	0.50				
Rebars	1 ^Φ 8 ∨				

Dodatkowe pręty na zginanie

Span Ad	diti	onal Steel Rein	forcement			
			Button 1		1	11
	0	+ C 14	Required (cm2)	1.52	0	0
тор	0	φοΨ	Placed (cm2)	3.08		
Detter	•	A (14	Required (cm2)	6.07	0	0
Bottom	0	φογ	Placed (cm2)	6.16		

Pole **Dodatkowe pręty na zginanie** wypełnia się automatycznie zgodnie z wymaganym i umieszczonym zbrojeniem na zginanie, dla zbrojenia górnego i dolnego.

7. Kontrola rys

]		Beam	s Editor		_ 🗆
<mark>5) 🗨 🔍 🕂</mark>	👋 🔀 🕸	1			OK Cancel
12744	∆1 212#09/10	13248/10 13248/10	A2 21265/10	13268/10	REINFORC. TAB
40	1.20 2.20 4.60 4.60		0 2.20 4.60	40	1 17 10 10 10 10 10 10 10 10 10 10 10 10 10
E 0.2		0.40 1.2		0.82	14 8 6.16 4 14 4 1.70 Total Langth (m) Maight per m (m) Weight per m (Kg) Total Weight / Ø (Kg)
2 .42	4.60 (3)4414 1=6 16		(1)2014 L=6.89		Rabe 5.005 General Total
Geometry Span Main Reinford	ement Support Reinforcement S	Stirrups Additional Cra	ck control Diagrams Re	etrofitting method	
Number	t Support 0.02 0.00	Right Support 0.00 0.00 0.00 0.00 0.00	Calcul.Wk(mm) Required cm2 Placed cm2 Final Wk(mm) Bars	Bottom 0.00 0.0	Right Support 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Zakładka Kontrola rys zawiera narzędzia do modyfikacji prętów ze względu na pękanie betonu, dla przęsła i podpór wybranej belki, w górnej i dolnej jej części.

Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu </u> aby zaktualizować pola:

Тор				Bottom		
Left Support	Span	Right Support		Left Support	Span	Right Support
0.02	0.00	0.00	Calcul.Wk(mm)	0.00	0.02	0.01
0.00	0.00	0.00 Butto	Required cm2	0.00	0.00	0.00
0.00	0.00	0.00	Placed cm2	0.00	0.00	0.00
0.00	0.00	0.00	Final Wk(mm)	0.00	0.00	0.00
0 ^Φ 6 ¥	0 Ф 6 ∀	0 Ф 6 ∀	Bars	0 Φ 6 Υ	0 Φ 6 ❤	0 Φ 6 🗸

Obliczona wartość W_k, wymagana powierzchnia zbrojenia, ostateczne W_k oraz charakterystyki użytego zbrojenia w określonym miejscu aktualizują się automatycznie.

Możesz ingerować w te dane poprzez zmianę ilość I średnic dla obydwu podpór i dla przęsła. Ilość umieszczonego zbrojenie aktualizuje się automatycznie.

Тор						
Left	Support	Span		Righ	nt Support	
	0.02		0.00		0.00	
	0.00		0.00		0.00	Bu
	0.28		0.00		0.28	
	0.00		0.00		0.00	
1	Φ 6 ∨	0	Ф 6 ∨	1	Φ6	۷

8. Wykresy

	Deams cuitor			
) 🔁 🗨 🔍			O	K Cano
Segmetry Span Main Reinforcemen	Support Reinforcement Stirrups Additional Crack control Distrams Retrofittion metho	а		
Geometry Span Main Reinforcemen	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting metho	d N) Vy/kN) Vy/kN	Mx(kNm)	Mz(kNm)
Seometry Span Main Reinforcemen	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting methor Number Combination 1 V Per Length (cm) 50 L(m) N(m) 2 +1.138(r.1.+1.59(r.2) 0 0 0 0 0	d A) Vy(k4) Vz(k4) 0.0 13.83 -0.00	Mx(klvm)	Mz(kNm)
Geometry Span Main Reinforcemen Envelope Sending Moments	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method Number Combination 1 v Per Length (cm) 50 L(m) N(0) 2 + 1.3SLc1 + 1.5OLc2 0.00	d XV) Vy(kV) Vz(kV) 0.00 13.83 -0.00 0.00 9.84 -0.00	Mx(kNm) 0.02 0.02	Mz(kNm) 1.72 -4,10
Seometry Span Main Reinforcemen Envelope Bending Moments Shear Forces	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method Number Combination 1 V Per Length (cm) 50 L(m) N(m) 2 +1.3SLc1 + 1.SULc2 0.00 0 0.49 0 0.49 0 Reinforcement Pattern 1.00 0 0 0 0 0 0	d M) Vy(kt) Vz(kt) 0.00 13.83 -0.00 0.00 9.84 -0.00 0.00 5.73 -0.00	Mx(kNm) 0.02 0.02 0.02	Mz(kNm) 1.72 -4.10 -8.06
Geometry Span Main Reinforcemen Envelope Ø Bending Moments Ø Shear Forces Ø Placed Reinforcement As	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting method Number Combination 1 V Per Length (cm) 50 L(m) N(h) 2 + 1.3SLc1 + 1.5OLc2 0.00 0 0 0 0 0 Reinforcement Pattern 1.00 0 0 1.49 0 1.49 0	d N) Vy(kl) Vz(kl) 1.00 13.83 -0.00 0.00 9.84 -0.00 0.00 5.73 -0.00 0.00 1.74 -0.00	Mx(klvm) 0.02 0.02 0.02 0.02 0.02	Mz(kNm) 1.72 -4.10 -8.06 -9.89
Geometry Span Main Reinforcemen Envelope Ø Bending Moments Ø Shear Forces Ø Placed Reinforcement As Ø Ultimate Moment Resistance	Support Reinforcement Stirrups Additional Crack control Diagrams Retrofitting metho Number Combination 1 Per Length (cm) 50 L(m) N(0) 2 + 1.3SLc1 + 1.5OLc2 0.00 0.00 0.49 0.00 0.49 0.00 0.49 0.00 0.49 0.00 0.49 0.00 0.00 0.49 0.00 0.00 0.49 0.00	d \$\text{v} Vy(kt) Vz(kt) \$\text{00} 13.83 -0.00 \$\text{00} 9.84 -0.00 \$\text{00} 9.84 -0.00 \$\text{00} 9.84 -0.00 \$\text{00} 1.74 -0.00 \$\text{00} 00 -2.37 -0.00	Mx(kNm) 0.02 0.02 0.02 0.02 0.02 0.02	Mz(kVm) 1.72 -4.10 -8.06 -9.89 -9.73

W zakładce Wykresy można znaleźć następujące informacje:

- Obwiednia momentów zginających, sił tnących, umieszczone zbrojenie, graniczny moment nośności, momenty zginające nośność wszystkich przęseł.
- Siły wewnętrzne dla każdego z obciążeń i kombinacji, poprzez sprecyzowanie wartości na długość.

Wykresy

Envelope
 Bending Moments
Shear Forces
✓ Placed Reinforcement As
✓ Ultimate Moment Resistance
 Bending Moments - Resistance

Aktywuj pole wyboru a w interfejsie cad wyświetlą się odpowiednie wykresy:

Siły wewnętrzne

Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu

	Number	Combination			Per Length (cm)	50
W polu	1	Load Case Combination	Í	1.35Lc	1 + 1.50Lc2	

wybierz przypadek obciążenia

lub kombinację oraz odpowiadający jej numer i wpisz długość belki dla której zostaną obliczone wartości sił wewnętrznych.

Możesz odczytać wartości sił wewnętrznych, obliczone dla wybranego przypadku lub kombinacji obciążeń, w określonych odległościach od początku belki (jak w tabelce poniżej).

L (N(Vy(Vz(k	Mx(k	Mz(k	My(k	
0.00	0.00	50.70	-0.00	-0.02	34.23	-0.00	
0.51	0.00	39.43	-0.00	-0.02	11.44	-0.00	
1.00	0.00	28.44	-0.00	-0.02	-5.31	0.00	
1.51	0.00	17.17	-0.00	-0.02	-16.85	0.00	
2.00	0.00	6.18	-0.00	-0.02	-22.61	0.00	
2.50	0.00	-5.09	0.00	-0.02	-22.89	0.00	
3.00	0.00	-16	0.00	-0.02	-17.66	0.00	-

B. METODY WZMOCNIEŃ

Zakładka Metody wzmocnień zawiera narzędzia dla zbrojenia ze względu na działania sejsmiczne oraz odbudowę belek według normy Code of Structural Interventions.

Obliczone zbrojenie należy dostosowywać do istniejącego a następnie przejść do procedury definiowania zbrojenia według technik wzmacniania konstrukcji.

Wybierz przęsło graficznie poprzez kliknięcie lewym klawiszem myszy w belkę na rysunku lub

poprzez wpisanie numeru w następującym polu

W Edytorze belek, belka wyświetla się zgodnie z wejściowym kierunkiem. W celu szybkiego zlokalizowania interesującej nas belki pośród innych elementów strukturalnych, warto uaktywnić numerowanie i widok lokalnych osi wszystkich belek. Możesz zaznaczyć odpowiednią belkę poprzez wprowadzenie jej numeru seryjnego w narzędziach edytora. Aby określić lewą i prawą podporę belki, użyj kierunku lokalnej osi xx'. Początek i koniec elementu belki w interfejsie edytora jest określony w odniesieniu do kierunku lokalnej osi xx, bez uwzględnienia orientacji belki w widoku z góry.

Ogólne dane

Wybierz z listy rozwijanej metodę wzmacniania konstrukcji która ma zostać zastosowana dla

Concete Jacketing Steel Plates wybranej belki, Fiber Reinforced Polymers

Aktywowanie pola wyboru Jednolite zbrojenie na całej długości Uniform reinforcement in the total length sprawi, że zbrojenie, w każdy z przekrojów krytycznych, będzie projektowane (podpory, rozpiętość) z uwzględnieniem najbardziej niekorzystnych wartości sił wewnętrznych. Najbardziej niekorzystną wartość uzyskuje się poprzez porównanie sił wewnętrznych we wszystkich przekrojach belki. W innym wypadku, jeśli pole wyboru zostanie nieaktywne, siły wewnętrzne każdego badanego pola krytycznego zostaną użyte do projektowania dla odpowiadającej metody wzmocnienia.

- Dla obydwu wspomnianych opcji, zbrojenie konstrukcji zostanie zastosowane w 3 krytycznych przekrojach belki (lewa/prawa podpora i przęsło).
- W przypadku płaszcza betonowego i dodatkowych warstw betonu, wpisz wartość w polu Otulina (mm), aby zdefiniować betonową otulinę przekroju.
- ▲ Aktywuj pole wyboru T III i wpisz grubość płyty w polu grubość płyty (cm) w przypadku T-kształtnego przekroju. Dla przekroju L-kształtnego, wpisz grubość płyty bez aktywowania pola T.
- ▲ Dla zerowej wartość grubości płyty, rozważany będzie przekrój prostokątny, bez znaczenia czy pole wyboru T będzie aktywne czy nie.

Performance level: Określ poziom wydajności konstrukcji.

		A - DL
		B - SD
Performance level	A - DL	✓ I - NC ******

Accessibility: Określ dostępność	terenu	gdzie	zbrojenie	występuje	zgodnie z	z§	4.5.3.2	normy
Structural Interventions Code.								

1. DODATKOWE WARSTWY BETONU – PŁASZCZ BETONOWY

Materiały: Wybierz rodzaj materiału dla każdego z komponentów metody zbrojenia.

Material	Concrete ×	
Concrete : C8/10	Type C20/25 V Constants	
Steel (Main) :S220	Fck (Mpa) 20 Steel (Stirrups)	ĸ
Steel (Stirrups) :S220	γcu 1.5 Type S220 ¥]
Bolts - Hangers :S220	γcs 1 Constants	
	Fctm (Mpa) 2.2 Es (Gpa) 200	
	TRd (Mpa) 0.25 Fyk (Mpa) 220	
	Vsu 1.15	
	εc (N,M) 0.0035 γss 1	
	Max Deformations	
	EC (14) 0.002 ES 0.02	
	OK Cancel OK Cancel]

Dane wejściowe: Określ dane wejściowe płaszcza betonowego dla dwóch podpór i przęsła belki.

	Beam structural reinforcement	×
The same in both sides The side-rebars are taken into consideration The additional rebars are taken into Consideration Default Default	Top flange Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars 4 Φ 6 \checkmark 1 0 Φ 6 \checkmark 1 d1(cm) 0	Sika OK Cancel Rehabilitation Protection
Left side Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars Corner 0 6 1 Intermediate 0 0 6 1	• •	Right side Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars Corner
Dowels - Suspensors Diameter (mm) 6 Anchorage Length (mm) 0 Stirrups 0 φ 6 ✓ Ultimate Moment Resistance Reinforced	Bottom fiange Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars	Design Checks Report

W pojawiającym się oknie dialogowym zbrojenie strukturalne belki dodaj płaszcz betonowy dla jednej lub kilku stron przekroju (góra, dół, strona lewa, strona prawa). W środku okna dialogowego dostępne jest okno podglądu, wyświetlające wybrane ustawienia. Obliczenia i sprawdzenie projektowania belki są takie same jak dla słupa (opisane w rozdziale B).

Aby uwzględnić pręty boczne w obliczeniach granicznego momentu nośności przekroju, aktywuj następujące pole wyboru:

The side-rebars are taken into consideration

Jeśli aktywujesz pole wyboru The same in both sides, pole Prawa strona zostanie deaktywowane i wypełni się tymi samymi danym wejściowymi jak dla pola Lewa strona.

Jeśli wybierzesz przycisk Domyślne, długości podpór i przęsła zostaną określone automatycznie. Długość podpory będzie równa jej długości krytycznej, a długość przęsła będzie równa całkowitej długości belki pomniejszonej o sumę długości krytycznych dwóch podpór. Obliczone długości odpowiadają długości zbrojenia.

Right side								
Length (cm	Length (cm) 120							
Thickness (cr	Thickness (cm) ⁰							
Do not participate in the bending resistance check								
Corner	Φ	6	\lor					
Internediate 0	Φ	6	\vee					

Jeśli wybierzesz przycisk Początkowy lub Zbrojony w polu Graniczne momenty nośności, zostaną przeprowadzone obliczenia granicznego momentu nośności odpowiednio istniejącego lub zbrojonego przekroju.

W polu Kołki – wieszaki (ang. Dowels – Suspensors) określ dane wejściowe dla kołków ustalających i wieszaków: średnicę i długość zakotwienia.

Dowels - Suspensors
Diameter (mm) 16 🗸
Anchorage Length (mm) 100
Top flange
Length (cm) 50 Thickness (cm) 10
Do not participate in the bending resistance check
Rebars
4 Φ 16 ∨ □
2 Φ 12 ∨ □ d1(cm) 3
• • • •
• •
and the second second

W polu Strzemiona, ustaw średnicę i rozstaw strzemion dla płaszcza betonowego.

Ф	8	v	1	10	cm
Ť			'		Gill

Parametry wejściowe pól Górna półka i Dolna półka

Jeśli aktywujesz pole wyboru Nie uwzględniaj podczas sprawdzania nośności na zginanie, odpowiadające stronom płaszcze betonowe i dodatkowe warstwy betonu nie będą uwzględniane w obliczeniach zbrojonego przekroju.

W pierwszej linii parametrów wejściowych zbrojenia, określ ilość prętów pierwszej/podstawowej warstwy prętów i ich średnice. Dla większej ilości warstw niż jedna, określ w

drugiej linii ilość tych warstw, średnice prętów i rozstaw d₁ pomiędzy warstwami. Warstwy prętów zawierają zawsze dwa pręty.

Poprzez aktywowanie pola wyboru po prawej stronie od listy rozwijanej zawierającej średnice prętów • 20 • , zbrojenie nie będzie uwzględniane w obliczeniach granicznego momentu nośności.

Parametry wejściowe pól Lewa strona i Prawa strona

Left side Length (cm) 50	
Thickness (cm) 10	• •
Do not participate in the bending resistance check	•
Rebars	•
Corner Φ 14 Υ	•
Intermediate 3 Φ 14 \vee	

W polu **Pręty** określ średnicę narożnych prętów danej strony, jak również ilość i średnice prętów pośrednich. Pozostałe parametry są takie same jak w przypadku górnej i dolnej części przekroju.

W polu Graniczny moment nośności wybierz przycisk Początkowy lub Zbrojony. Pojawi się nowe okno dialogowe z interaktywnym wykresem jednoosiowego momentu zginające i siły osiowej, określonego odpowiednio dla istniejącego i zbrojonego przekroju.

	Beam structural reinforcement	
The same in both sides The side-rebars are taken into consideration The additional rebars are taken into	Top flange Length (cm) 0 Thidmess (cm) 0 Do not participate in the bending resistance check	Sika Cancel
Default	Φ Φ Φ 2 Φ 12 \vee 12 \vee \Box $d1(cm)$	Rehabilitation Protection
Left side Length (cm) 50 Thickness (cm) 10 Do not participate in the bending resistance check Rebars Corner Intermediate 3 Φ 14 \checkmark]		Right side Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars Corner Φ 6 \checkmark Internediate 0 Φ 6 \checkmark
Dowels - Suspensors Diameter (mm) 16 v Anchorage Length (mm) 100 Stirrups Φ 8 v / 10 cm Ultimate Moment Resistance Initial Reinforced	Bottom flange Length (cm) 120 Thickness (cm) 0 Do not participate in the bending resistance check Rebars 4 0 6 0 1 0 0 6 0 0	Design Checks Report

Wybierz polecenie Kontrola projektu, aby program przeprowadził sprawdzenie zaprojektowanych płaszczy betonowych dla każdej ze stron z płaszczami (według normy Code of Structural Interventions) oraz aby obliczył odpowiednią ilość kołków ustalających. Sprawdzenie projektu i odpowiadających mu wyników jest podobne do tego dla słupów. Wyniki sprawdzenia prezentowane są na dole okna.

Wybierz polecenie **Raport**, aby wyniki i sprawdzenia projektu zostały dodane do odpowiedniego rozdziału raportu.

Po przeprowadzeniu zmian w parametrach dla płaszcza betonowego, wybierz polecenie Raport, aby zaktualizować dane w końcowym raporcie projektu.

2.STALOWE LAMINATY - FRP

Dla kolejnych dwóch metod wzmocnień, postępuj według tej samej procedury jak w przypadku poprzedniej metody. Dla stalowych ściągów lub FRPs, wybierz odpowiednią opcję z listy rozwijanej.

General D)ata	
Туре	Steel Plates	۷
🖌 Unifo	Concete Jacketing	
Cover	Fiber Reinforced Polymers	

Materiał: Określ rodzaj stali dla stalowych laminatów i polimerowych włókien.

Steel (Stirrups)						
Type Constants	S235(Fe360 ∨					
Es (Gpa)	210					
Fyk (Mpa)	235					
γsu	1.15					
γss	1					
Max Deform	ations					
εs	0.02					
ОК	Cancel					

Wydajność i poziom dostępności definiuje się według tej samej procedury jak dla płaszczy betonowych.

Dane wejściowe: Ustal dane wejściowe dla Stalowych ściągów lub FRP dla podpór i przęsła belki.

I	nput data
	Left support
3	Span
	Right support

W oknie dialogowym Zbrojenie belki, zdefiniowane są dane wejściowa ze względu na stronę przekroju (góra, dół, strona lewa, strona prawa). Znajduje się tu też okno zawierające podsumowanie wyników sprawdzenia projektu. Obliczenia i sprawdzenie projektu dla belki są takie same jak dla słupów, co opisano w rozdziale B.

Aby istniejące pręty zostały uwzględnione w obliczeniach granicznego momentu nośności przekroju, aktywuj następujące pole wyboru:

Aby uwzględnić istniejące dodatkowe zbrojenie w podporach belki w obliczeniach granicznego momentu nośności przekroju, aktywuj okno dialogowe:

The additional rebars are taken into consideration

Jeśli aktywujesz pole wyboru:

The same in both sides, pole Prawa strona

zmieni się na nieaktywne i zostanie uzupełnione o te same parametry

wejściowe jakie zostały zdefiniowane w polu Lewa strona.

Jeśli wybierzesz przycisk **Domyślne** długości podpór i przęsła zostaną automatycznie wypełnione. Jako długość podpory ustawiona zostanie długość krytyczna a jako długość przęsła – całkowita długość belki pomniejszona o sumę długości krytycznych dwóch podpór. Obliczone wartości odpowiadają długości zbrojenia.

Ultimate Moment Resistance						
Reinforced						

W polu Graniczne momenty nośności, jeśli wybierzesz przycisk Początkowy lub Zbrojony, graniczny moment nośności zostanie przeliczony dla odpowiednio istniejącego lub zbrojonego przekroju.

Parametry wejściowe w polach Góra i Dół

Jeśli aktywujesz pole wyboru Nie uwzględniaj w sprawdzeniu nośności na zginanie, określony płaszcz betonowy lub dodatkowe warstwy betonu nie zostaną uwzględniony w obliczeniach zbrojonego przekroju. Długość laminatu zostanie zdefiniowana jako równa długości płaszcza betonowego a jego szerokość – równa szerokości odpowiadającej mu strony. Długość zakotwienia jest wymagana i program ustawi wartość domyślną, która może być zmieniona przez użytkownika. Ilość warstw jest równa ilości warstw zbrojenia.

Parametry wejściowe w polach Lewa strona i Prawa strona

Left side Length (cm) 40 Thickness (mm) 1 Width (cm) 50 Anchorage (cm) 33	· · ·
Number of layers 1	
Strips' data Continuous placement Width (cm) 0 Spacing (cm) 0	

Geometria zbrojenia określana jest podobnie jak w przypadku zbrojenia górnego i dolnego przekroju. Pole wyboru dotyczące nieuwzględniania laminatów w obliczaniu granicznej nośności przekroju dla lewej i prawej strony jest od razu nieaktywne ponieważ zapewniają one wytrzymałość tylko na ścinanie.

Umiejscowienie laminatów może być równomiernie rozłożone lub w pasmach, ciągłe lub nieciągłe z pośrednimi rozstawami. Aktywuj pole wyboru Formowanie ciągłe w polu Dane pasm i zdefiniuj szerokość laminatu. Dla nieciągłego ułożenia, deaktywuj pole wyboru i zdefiniuj rozstaw między pasmami.

Wybierając polecenie **Sprawdzenie projektu** program wykona obliczenia i przedstawi wyniki minimalnej grubość t₁ i t₂ dla każdej ze stron, ze względu na przekrój laminatu i typ materiału. Następnie grubość t₁ i t₂ zostanie obliczona ponownie w oparciu o minimalne wartości t₁ i t₂, po czym sprawdzenie musi zostać ponownie wykonane. Ponieważ obliczanie grubość t₁ i t₂ jest

Automatic thickness calculation

metodą iteracyjną, wybierz przycisk "Automatyczne obliczanie grubości".

Program automatycznie obliczy ostateczną grubość t₂, która wyświetli się w dolnej części okna dialogowego. Następnie użytkownik powinien wstawić obliczoną wartość w określonym polu i ponowić ostatecznie sprawdzenie projektu.

Wykorzystanie laminatu lub FRP zostanie osiągnięte wraz z wzrastaniem grubości lub ilość warstw.

Report Na koniec, wybierz polecenie Raport a wyniki sprawdzenia zostaną dodane do odpowiedniego rozdziału raportu.

- Po każdej wprowadzonej zmianie dla stalowych laminatów lub FRP, pamiętaj aby ponownie wybrać polecenie Raport aby aktualizować dane które pojawią się w ostatecznym raporcie.
- W SCADA Pro techniki i materiały uwzględnione w metodach umocnień wzbogacone są o techniki i materiały firmy Sika A.E. Użytkownik ma bezpośredni dostęp do biblioteki

materiałów Sika poprzez przycisk Sika, który pojawia się w oknie dialogowym związanym ze zbrojeniem belek.

Przyciski Odbudowa i Ochrona odpowiadają oknom dialogowym z narzędziami związanymi z odbudową i ochroną elementów belkowych według normy Code of Structural Interventions.

Rehabilitation
Protection

Rehabilitation - Protection	Rehabilitation - Protection	
Concrete Repair	Concrete Repair	
Corrosion Protection	Corrosion Protection	
Materials used on the surface that act as corrosion inhibitors for the steel reinforcement of the reinforced concrete structures and applied by impregnation.	Materials used on the surface that act as corrosion inhibitors for the steel reinforcement of the reinforced concrete structures and applied by impregnation.	
Concrete Repair Repairing mortars for the structural rehabilitation of concrete members.	Concrete Repair Repairing mortars for the structural rehabilitation of concrete members.	
Crack Filing	Crack Filling	
Cementitious binding materials for the structural rehabilitation of the concrete cracking, welded and / or infilied.	Cementitious binding materials for the structural rehabilitation of the concrete cracking, welded and / or infilled.	
Sika	Sika	
Printout Add Delete	Printout Add Delete	
Protection	Protection	
Fire Protection Layers Fire resistant mortars applied by using epoxy resin.	Fire Protection Layers Fire resistant mortars applied by using epoxy resin.	
Concrete layers or coating	Concrete lavers or coating	
Repairing mortars of one or more components for final protective coating.	Repairing mortars of one or more components for final protective coating.	
Paint Protection	Paint Protection	
Plastic-elastic paint protection for concrete and coatings.	Plastic-elastic paint protection for concrete and coatings.	
Silca	Sika	
OK Cancel	OK Cancel	

Użytkownik może wybrać jedną z trzech metod odbudowy i naprawy aktywując odpowiednie

pole wyboru. Wybierając polecenie Raport Report informacje zostaną importowane do ostatecznego raportu projektu.

Zbrojone belki zostaną wyróżnione na ekranie – zaznaczą się na żółto.

W zależności od typu wybranej metody zbrojenie, pojawi się oznaczenie literą:

- Dla płaszcza betonowego: J
- ✤ Laminat : L
- FRP: F
- Następująca procedura wykonywana jest względem osi lokalnych belki (w zależności od kierunku w którym była rysowana, z lewej do prawej i vice versa). Z tego powodu zaleca się aktywowanie widoku osi lokalnych przed wprowadzeniem danych dla metody zbrojania.
- Warunkiem pojawienia się etykiety w raporcie jest wcześniejsze wybranie przycisku Raport w oknie dialogowym wybranej metody dozbrajania belki.

The same in both sides The side-rebars are taken into consideration	Top flange 0 Thickness (mm) 0 Length (cm) 0 Anchorage (cm) 0 Width (cm) 0 Anchorage (cm) 0	Sika	
The additional rebars are taken into consider Default	Number of layers 1 Not participate in bending	Rehabilitation Protection	
Left side Lengti (m) 0 Thickness (mn) 0 Width (m) 0 Anchrwage (m) 0 Insuber of layers 1 0 Not part topate in bending Stripf dat Continuous placement Width (m) 0 Specing (m) 0		Right side Thidness (mm) 0 Length (m) 0 Androrage (mi) 0 Number of layers 1 1 1 Not participate in bending 55troid data 55troid data 1 Continuous placement Width (cm) 0 Spacing (cm) 0	
(Hinate Komert Decisions	Bottom flange 0 Thickness (mm) 0 Width (m) 0 Anchorage (cm) 0 Number of layers 1 0 Not participate in bending	Design Checks Automatic thickness calculation	

