

SCADA Pro - WHAT'S NEW 2017

Note

ACE-HELLAS in the context of developing and optimizing its products, and in particular SCADA Pro, has created the new SCADA Pro 2017 with new enhanced capabilities.

Version SCADA Pro17 May 2017

What's NEW in SCADA Pro 17?

- **1.** New way of calculating beam reinforcement. Reinforcing with common bars of a specific length.
- 2. More combinations for the slab's design.
- 3. New storage capability of dimensioning parameters.
- 4. Slabs Deflection Control according EC2.
- 5. Red mark on slab symbol when thickness is less than permitted by regulation
- 6. Members diagrams, nodes displacements, plate element internal forces, slab strip diagrams view.
- 7. New possibility of color display of intensive sizes on linear and surface elements, based on the sign.
- 8. New display capability of the deformation values based on the color gradation
- 9. Textile Reinforced Mortar(TRM) (ACI549.4R-13 and Triantafillou & Antonopoulos methods).
- **10. Load bearing masonry check based on Stress Failure Criterion.**
- 11. Pehabilitation are enriched method of beams and columns, using EM4C and Sika materials.
- **12. 3D DXF-DWG import. Automatic attribution of the cross sections on the drawing** lines. Lines and arcs identification.
- 13. Member Correspondence, to assign the calculated wind and snow loads.
- 14. New ability to check steel members at shorter times.
- 15. New command group for merging steel elements.
- **16.** A new warning symbol for inefficiency of the anchoring length in the beams.
- **17**. New command to merge the nodes.
- 18. New, supervisory and comprehensive print out of the results of buckling and deformation checks (total and per member) of steel structures.
- **19.** Recognition of arcs from dwg 2D-3D.
- **20. SCADA connection with REVIT via ifc.**
- 21. Import of beams detailing in Drawings without needing to open them in editor.

- 22. Create separate files with support reactions (* .rea inside scenarios' folder) and two new files in the anal folder: combdispl.txt and combforce.txt. The first contains movements, rotations from combinations, and the second the corresponding intensive forces.
- 23. New type of design scenario including the EC2 provisions but not the EC8 provisions. In this scenario, the columns' stirrups do not continue in the node.
- 24. Jacketing for circular cross section.
- 25. The uniform height distribution of the earthquake in the Eurocode 8 scenario is added.
- **26.** More distinct Attribute points of beams and posts (larger and red).

The NEW ADD-ONS of SCADA Pro 17

27. SCADA Pro OCP.

28. Modeling and dimensioning of flat slabs.

29. Punching shear checks.

What's NEW in SCADA Pro 17?

1. New way of calculating beam reinforcement. Reinforcing with common bars of a specific length

Structural Component Parar	meters				×
Combinations Steel Reinforcement	Slabs Capacit	Beams y Design	Columns	Footings	
Available Rebars Φ(mm) 0 +	6,8,10,12,1	14, 16, 18, 20, 22, 2	5,28,32,35,	Lmax(m) 12	
Slabs Columns - Walls Concrete Cover (mm)	Beams Foot	ing Connection B ebar spacing (cm)	eams Strip Fo	0 Min 5	1
Web Reinforcement Top ✓ Extend E 2 Φ 10 ✓ Side rebars Support rebars	Bottom Ext	end 2 Фmax (0 Фmax (2 Фmax (Update All 20 Crad 20 Crad 20 max V	cing Φ 8 ∽ Vidth (cm) 120	
Same Reinforcement i Multi-Span Reinforcen Shear (Stirrups)	n Span-Suppo	rt			
Min Spacing (cm) Preference Stirrups (90	20 (Þmin Þmax	Support Span	minΦ / (cm) 8 ∨ 20 8 ∨ 20	
Save	Load			OK Cancel	

Activate the following checkbox Multi-Span Reinforcement so that the reinforcement in the openings is common to the entire beam.

The program, taking into account the reinforcement requirements across the beam (supports and openings), places a common bar aimed at the most economical solution.

2. More combinations for the slab's design

In the new version of Scada Pro there is the feature of introducing more combinations for the slab's design. In the design parameters window, inside Slabs Tab:

	el Reinfor	cement		Capacity	Design		Steel		Timber	structures
Co	mbination	IS	Slabs	;	Bea	ms	Co	lumns		Footings
Co	ncrete : (30/37		Steel (Main) :B	500C		Steel	(Stirrups	;) :B500C
Cheo	ks				- 6			1		
Load	l combina	tions for	strip calcu	ulation		1 ~	ULS V	' In:	sert	Delete
LC	LG1	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	PL
LC	1 1.3	5								0
LC	2 1.50)								1
-										
- Sh	near									
5										
	- oneon									
Se	erviceabili Crack o	ty	Ora	ack width	(mm)	0.	3	1		
Se	erviceabilit	ty control ion contr	Cra rol []/.	ack width	1 (mm)	0.	3]		
Se	Crack of Deflect	ty control ion cont	Cra rol [1/-	ack width a] a	1 (mm)	0.	3			
Se [D	erviceabili Crack o Deflect iagram sc	ty control cion cont ale 1 m :	Cra rol []/. =	ack width a] a 5	1 (mm)	0. (kN / kl	3 Nm)]		
D	erviceabili Crack o Deflect iagram sc	ty control ion cont ale 1 m :	Cra rol [1/.	ack width a] a 5	1 (mm)	0. (kn / kl	.3 Nm)]		
D	erviceabili Crack o Deflect	ty control control ale 1 m =	Cra rol []/. =	ack width a] a	1 (mm)	0. (kN / kl	3 Nm)]	K	Cance
D	erviceabili Crack o Deflect	ty control cion control ale 1 m =	Cra rol []/.	ack width a] a 5	ו (mm)	0. (kn / ki	3 Nm)]	К	Cance
D B D B	rviceabili ☐ Crack o ☐ Deflect iagram sc	ty control ion contr ale 1 m :	Cra rol []/.	ack width a] a 5	1 (mm)	0. (kn / ki	3 Nm)	0	К	Cancel
Se E D ecks ad co	erviceabili Crack o Deflect iagram sc iagram sc mbinatio	ty control ion control ale 1 m =	Cra rol []/: = rip calcul;	ack width a] a 5	n (mm)	0. (kN / kl	3 Nm)		K	Cance
See E	rviceabili ☐ Crack o ☐ Deflect iagram sc iagram sc I G 1	ty control ion contr ale 1 m =	Cra rol []/. = rip calcula	ack width a] a 5	1 (mm)	0. (kN / kl	3 Nm)		K Insert	Cancel Delet
E See E D	erviceabili Crack of Deflect iagram sc mbination LG1	ty control ion contr ale 1 m = ns for st	Cra rol []/- = rip calcula	ack width a] a 5	LG5	0. (kN / kl 2 ~	3 Nm) SLS LG7	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	K Insert LGS	Cancel Delet
E E E E E E E E E E E E E E E E E E E	erviceabilit Crack o Deflect iagram sc mbinatio LG1 1.00 1.00	ty control dion control ale 1 m =	Cra rol []/. = rip calcula	ack width a] a 5	LG5	0. (kN / kl 2 ~	3 Nm) / SLS LG7	0 C LG8	K Insert LGS	Cancel Delet 9 PL 0
See E D D ecks ad co C C 1 C 2	rviceabili Crack of Deflect iagram sc mbinatio LG1 1.00 1.00	ty control dion control ale 1 m =	Cra rol []/. = rip calcula LG3	ack width a] a 5	LG5	0. (kN / kl 2 ~	3 Nm) / SLS LG7	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	K Insert LGS	Cancel Delet 9 PL 0 1

There are 2 default combinations, one for the Ultimate and one for the Serviceability Limit States.

To create a new combination, press, "Insert". The new combination is the combination number 3 and the coefficients are all 0.

Load co	mbinatio	ns for st	rip calcul	ation		3 ~	ULS 🗸	Ins	sert	Delete
LC	Lot	LG2	LG3	LG4	LG5	LG6	LG7	LG8	LG9	PL
LC1	0.00									0
LC2	0.00									1

Change the coefficients and select the Limit State.

Same way to define as much combinations you like, or to modify the ones you already create. The program will use the combination with the worst moment regarding the USL combinations and correspondingly will make deformations checks by the functionality combinations. Using "Delete" button you can delete the created combinations. Only 1 & 2 default combinations cannot be deleted.

3. New storage capability of dimensioning parameters

The parameters dialog box in the new Scada Pro version contains two more commands for saving and reading the design parameters of the active scenario.

ructural Compone	uctural Component Parameters									
Steel Reinforce	ment	Capaci	ty Lesign	ma	Steel	Timber	structu	ires		
Combinations of L	oad Sets	(101)	Ult.	Serv.	+XX	+Z	Z	No		
Combinations	Combinations ULS/SLS Dir. ^									
1(14) +1.35Lc1+1.50Lc2 ULS										
2(1) +1.00Lc1+0	2(1) +1.00Lc1+0.50Lc2 ULS									
3(2) +1.00Lc1+0	.30Lc2+1	00Lc3+0.3	0Lc4+1.00	Lc5+0.3	0Lc7+0.30Lc9	ULS	+X			
4(2) +1.00Lc1+0).30Lc2+1	00Lc3+0.3	0Lc4+1.00	Lc5+0.3	0Lc70.30Lc9	ULS	+X			
5(2) +1.00Lc1+0	.30Lc2+1	00Lc30.3	0Lc4+1.00	Lc50.3	0Lc7+0.30Lc9	ULS	+X	_		
6(2) +1.00Lc1+0	.30Lc2+1	.00Lc30.3	0Lc4+1.00	Lc50.3	0Lc70.30Lc9	ULS	+X	_		
7(2) +1.00Lc1+0).30Lc21	00Lc3+0.3	0Lc41.00	Lc5+0.3	30Lc7+0.30Lc9	ULS	X	-		
8(2) +1.00Lc1+0).30Lc21.	.00Lc3+0.3	0Lc41.00	Lc5+0.3	80Lc70.30Lc9	ULS	X	-		
9(2) +1.00Lc1+0	0.30Lc21.	00LC30.3	OLC41.00	LC50.3	30LC7+0.30LC9	ULS	X	~		
<	-0.30LC2	1.00LC30.	30LC41.U	ULC50.	.30LC70.30	ULS	>			
Level Multipliers		1/	(1-θ)					\sim		
Level	Х	γ	Z		Insert Co	mbination	S			
0 - 0.00	1.000	1.000	1.000		Combination	ns Calculat	ion			
1 - 400.00	1.000	1.000	1.000							
2 - 700.00	1.000	1.000	1.000	1	Cambination C		101	7		
3 - 1000.00	1.000	1.000	1.000		Combination G-	ŧψzQ	101			
					Aut	omatic De	sign			
Save		Load				ОК	Ca	ancel		

Once you configure the dimensioning parameters, you can now save them to a file in order to use them in your next projects.

Press "Save" and type a name.

Use "Load" command to apply the parameters already saved.

ATTENTION

A precondition for loading a parameter file is that the current design scenario is the same as the scenario of the parameters. Otherwise you will see the warning message.

4. Slabs Deflection Control according EC2.

In the newest SCADA Pro version contains also the slabs Deflection Control.

Deflection control based on 7.4.2 and 7.4.3 of EC2 is presented at the end of the results of each slab.

The results of the two checks are shown separately.

+-				-DEFLECT	TION CON	TROL	(EC2 7	7.4.	2 & 7.	4.3	3)				+
Ľ	1/d	1/d	Suf.	Suggest	ced.min	I M	íax. M	1	dul	1	а	1/a	(perm.)	Suf.	Ľ
L	- E	perm.	I.	thick.	hs(mm)	- I	(kNm)	1	(mm)	1		1	(mm)	1	Ľ
Ŀ	+-		+	+	+	+-		-+		-+-		+		+	L.
i.	34.59	80.10	YES	1 7	7 1	1.1	-7.64	11	0.42	1	250	1	18.40	YES	i.
+-							<u>_</u>								+

From the first check results a minimum recommended thickness, that can not be proposed for the initial slab recognition, because its reinforcement is required to calculate it.

Note:

The calculation of the sizes of the first check does not involve intensive forces, while the second check considers the serviceability combination (s).

5. Red mark on slab symbol when thickness is less than permitted by regulation

6. Members diagrams, nodes displacements, plate element internal forces, slab strip diagrams view

It is now possible to see not only the Members diagrams, but also nodes displacements, plate element internal forces and slab strip diagrams view.

Commands selection can be through Members Design>Members Diagrams

Or with right mouse click on a member. Each command opens the respective dialog box:

Nodal Displacements									
Displacements o	f Node : 34		×						
Coordinates : 13	366.83,1000.00,	450.99							
Dx(mm)	0.2681								
Dy(mm)	-1.2344								
Dz(mm)	0.1889								
Rx(rad)	0.0000								
Ry(rad)	0.0000								
Rz(rad)	0.0001								
Load Case	\sim	1	\sim						
Maximum	Rates	Evit							
- Address - Addr	Hates	EAR							
Plate Elem	ent Internal For	ces	~						
Plate Elem	ent Internal For Internal Forces :	rces 53	×						
Plate Elem Plate Elements Ir Nodes : 997 , 10	ent Internal For Iternal Forces :	sces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For Internal Forces : 027 , 995 , 966 2476.0000	rces 53	×						
Plate Elements Ir Nodes : 997 , 10	ent Internal For iternal Forces : 027 , 995 , 966 2476.0000 -3654.0938	sces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For Iternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625	53	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150	rces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182	sces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For iternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	sces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	rces 53	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	sces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	53	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	53	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	rces	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999	1 E wit	×						
Plate Elements In Nodes : 997 , 10	ent Internal For ternal Forces : 027 , 995 , 966 2476.0000 -3654.0938 212.5625 193.9150 -19.8182 -0.9999 Rates	ces 53	×						

selected size values display with two different colors, one for the positive values and one for the negative.

SCADA Pro - What's NEW 2017

9. Textile Reinforced Mortar(TRM) (ACI549.4R-13 and Triantafillou & Antonopoulos methods).

Use Textile Reinforced Mortar for shear reinforcement in plane, defined by the corresponding window for the selected wall from the list.

Select the "Design Method". To SCADA Pro contains 2 methods and you can select between

Specify the characteristics of the mesh, based on catalogs and commercial materials.

🛕 In SCADA Pro company materials have been introduced 🗌

Sika

EM4C

By selecting the company and the corresponding material the mesh features are automatically filled in by the program.

SCADA Pro - What's NEW 2017

10. Load bearing masonry check based on Stress Failure Criterion

In the new version of SCADA Pro the check of load bearing masonry in terms of stresses based on the Karantoni et al. stress failure criterion is added.

The check in terms of stresses is performed in both curved and planar walls for existing or new masonry.

The check command is located in the **Post-Processor** tab where:

• Initially the masonry type is selected (Existing/New).

Name	Comb.	F
* * * * * *	Plegma	- S30 *****
696	4	-0.549
697	4	-0.573
698	4	-0.625
699	4	-0.731
700	4	-0.798
701	4	-0.807
702	4	-0.761
703	4	-0.748
704	4	-0.679
705	4	-0.333
706	4	-0.519
707	4	-0.338
704 705 706 707	4 4 4 4	-0.879 -0.333 -0.519 -0.338

• A detailed report for every mesh is created.

			Stress Failur	re Criterion				
Name of Masonry Criterion	Criterion Type Description	Karantoni et a Existing (EC8 F = $\alpha J_2/f_w^2 + \lambda$ SUFFICIENCY INSUFFICIENC	l. .3) .J ₂ ^(1/2) /f _w + βl ₁ /f ': Για F < CY : Για F >	w - 1 0 = 0			·····································	
			Mesh (Check				
Mesh Na	me: Ple	gma S21		Mater	ial : Masonry	stone wal	- M2 50	cm
Compress Tensile st Equal bia	sive strength trength xial comp. stre	f _w = f _{wt} = ength f _{wc_b} =	0.000 (N/n 0.000 (N/n 0.000 (N/n	nm²) n nm²) C nm²)	γ _M = 2.20 / 1.5 F = 1.35	50		
Criterion I	Parameters :	α = β =	0.665 b 3.835 f	o = 1.650 = 0.085	$c_1 = 13$ $c_2 = 0.9$.765 λ. 959 λ <u>.</u>	= 0.58 2 = 0.99	1 5
					Critica	I Combinat	ion	
Number of elements	Total Area (m ²)	Number of elements that fail	Total Failure Area (%)	ID.	Numbe elements fail	r of Tot that	tal Failure Area (%)	Fme
128	8.64	0	0.00	37	0		0.00	-0.3
Mesh Nar Compress Tensile st Equal bia Criterion I	me : Ple sive strength trength xial comp. stre Parameters :	egma S22 $f_w = f_{wt} = f_{wt} = f_{wt} = g_{wt} = g_{$	0.000 (N/n 0.000 (N/n 0.000 (N/n 0.000 (N/n 0.665 t	Materi nm ²) (nm ²) C nm ²) 0 = 1.650	######################################	stone wall 50 3.765 λ ₁	######## I - M2 50	;##### cm
	1	p -	3.033 1	- 0.065	C ₂ = 0.:	5J5 /2	2 - 0.99.	,
Number of	Total Area	Number of	Total Failure		Critica	Combinat	ion	
alomonte	(m ²)	elements that fail	Area (%)	ID.	Number elements fail	rof Tot that	Area (%)	Fmax
elements								

11. Rehabilitation methods of beams and columns are enriched, using EM4C and Sika materials

In SCADA Pro, the techniques and the material considered in each rehabilitation method are enriched with the corresponding material and techniques of the companies' EM4C and Sika. The user has direct access in the library of EM4C and Sika materials by pressing the corresponding button, which appears in the dialog boxes related to column reinforcement.

For the automatic attribution of the cross sections on the drawing lines, is necessary the correct matching of the lines in the respective layers.

Choose a layer from the list and depending on whether includes columns or beams, select the corresponding command at the bottom of the window

Automatically opens the cross sections window, to select the one that will be assigned on all the lines of the selected layer. Also, choose the angle, the insertion point and the Scada's layer in which they will join.

Members created automatically containing physical and mathematical properties.

13. Member Correspondence, to assign the calculated wind and snow loads

In the new version of SCADA Pro, completed and integrated the automatic calculation of influence zones for linear members in order to make the distribution of wind and snow loads.

A Remind that until now the automatic distribution was only for the structures derived from Templates. Now enable this distribution on any surface.

					~			
Member Corres	pondence				×			
Wall left (perp	endicular wi	nd d	lir. 0)		~			
Add Members	ies (m)		Vertices	Coordinate (cm)				
Left	0	1.	Pick	0.0,500.0,0.0				
Right	0	2.	Pick	0.0,0.0,0.0	_			
Dick		3.	Pick	0.0,0.0,300.0	_			
FICK				Distribution View	1			
	Initialisation of all members (Walls-Roofs)							
Members I	Initialisation			Cano	el			

By selecting the command now opens the following dialog box

The part on the old definition of the influence zones did not change but added to the right a new part to define the area with three points.

 \sim

The definition always concerns the active area

Wall left (perpendicular wind dir. 0)

Better to start the procedure by pressing the "Members Initialization" button.

Indicate the point graphically with the following particularity:

- The first two points define the direction by which the automatic calculation of influence surfaces made for items which are parallel to this direction.
 Note also that the distribution will be for all linear members belonging to this level and are parallel to the first direction.
- After you define the three points, press the "Distribution" button and the program automatically makes the distribution and displays it.

Similarly for the other walls.

Concerning the roofs, the definition can be sequentially. First select the roof

Roof No.1

, then you must define the

individual areas.

First define the left slope indicating graphically the 3 points

and then the right. The overall result is the following

SCADA Pro - What's NEW 2017

1 Finally it is worth noting that if the walls are properly defined there is NO need of more definition. Just select each wall and press «Distribution». The distribution becomes and simultaneously displays on the linear members belonging to this wall. Same for the flat roofs only.

14. New at	oility to chee	ck steel memb
Member Design		×
Layer Steel C	Columns	<u>}</u> ~
Member 1 IPE 4	450 ~	Parameters
Group Column	าร	~
Apply to a	all members of t	ne Layer
Checking with I	Min, Max of all c	ombinations
Check in Layer	Mem:50/5	50 Comb:5/5
Exploration of	of Member Buckl	ing
Exploration of	Member Servica	bility
Member Resu	lts L	ayer Results
ОК		Cancel

shorter times.

Activating the option Checking with Min, Max of all combinations, in checks will be taking into account only the maximum and minimum values of the intensive forces resulting from all combinations, excluding the intermediate values, so the process will be completed at noticeably shorter times.

15. New command group for merging steel elements.

In "Members Design" added a new command group that provides steel elements merging.

7	EC2 EC2 1 (0)	2 👹	1
×.	EC2-EC3 T (0)	i 40a 🔉	L
New	Active Scenario	Para- Merge meters Elements	-
	Scenari	os	-
		🐝 Auto	
		ar User	
		💇 View	
		Sorrection	
		Single Delet	e
		Sverall Dele	te

Merge elements means that, either automatically or manually, the individual parts of a single element, merge in each buckling direction. Meaning that, the buckling length is considered computationally, not the actual length of the element, but the unified from the beginning to the end of the column or beam, respectively.

In addition, in the presentation of the results, for these merged elements, the worst results display only once and not for each individual part, as it was so far.

Finally, in automatic merging, there is the definition of discontinuity levels, horizontal or vertical, used as merging boundaries of a continuous element.

16. New command for member's direction redefinition.

In Tools > Member added a new command named "Direction Redefinition".

– Direction redefinition

This command should be used when one or both of the following messages appear in the Model Checks Reports:

Error1678: The column 21 has been assigned with wrong orientation There are members with wrong local axis

The first one, which concerns only the columns, has to do with the direction of their placement (the correct direction is from the bottom to the top),

while the second is a general message concerning beams and columns, and especially for the beams, appears when they are not placed with the program conversion, from left to right and from top to bottom.

So when the above messages appear, using the "Direction Redefinition" command the program corrects automatically the orientation for the entire model.

17. New command that Merge Beams

Where the beams include surface elements is a need to break the members of the beams in order to ensure the necessary connections between the linear and surface elements.

Consequently, breaking the beam in small portions creates the need for unification in order to be able to dimensioned as a single member. This is accomplished by using the

command Merge Beams.

Merge Beams

Select the command, and then one by one in succession the parts of the beam. Continue with "Continuity of Beams" and "Check Reinforcement".

If for some reason you wish to delete a preliminary merging, select the command

Merge Beams Delete

and then the first element of the unified beam. Right click to complete.

18. A new warning symbol for inefficiency of the anchoring length in the beams.

The way of calculating the lbd anchorage lengths for different regulations is summarized below:

The total lbd is calculated and divided into l1 and l2. L1 is the linear anchorage length, and l2 is the one that rotates in the node.

NOTES:

- ▲ EC2 does not provide for a minimum linear anchorage length but provides for a minimum TOTAL anchorage length (l1 + l2) which also calls it lb, min.
- ▲ EC8 in paragraph 5.6.2, among others, provides ONLY for DCH the anchorage length to be only linear (excessive).

Based on the above, resulting:

- For EC2 w/o EC8 scenario as well as for all EC with DCL and DCM ductility classes, it does not obey a minimum linear anchorage length lb,min, but checks the total length lbd with lb,min according to 8.4.4 Of the EC2.
 So, there will never be an error message because if the anchorage length is bigger than the width of the support, the bar will reach the face and then turn to the node.
- 2. For EC with DCH high ductility class, it obeys the minimum linear anchorage length according to 5.6.2 of EC8 . The error message will be displayed.
- ▲ In addition, the affinity regions are now taken into account for calculating lb. The upper reinforcement is region II while the lower I.

19. New command to merge the no	des
Merge	
Offset × Distance (cm) 0.1 OK Cancel	Command to merge the nodes in small distances between them. Select the command and specify a distance value. Nodes at a distance less or equal to this will be merged, resulting in a single node.
20. New, supervisory and comprese deformation checks (total and p	nensive print out of the results of buckling and her member) of steel structures
21. Recognition of arcs from dwg 21	D-3D
22. SCADA connection with REVIT v	ia ifc
23. Import of beams detailing in Dra	awings without needing to open them in editor
24. Create separate files with supp two new files in the anal fol contains movements, rotation corresponding intensive forces.	ort reactions (* .rea inside scenarios' folder) and der: combdispl.txt and combforce.txt. The first ns from combinations, and the second the
25. New type of design scenario provisions. In this scenario, the	including the EC2 provisions but not the EC8 columns' stirrups do not continue in the node.
26. Jacketing for circular cross section	on
27. The uniform height distribution added	of the earthquake in the Eurocode 8 scenario is
28. More distinct Attribute points o	f beams and posts (larger and red)

The NEW ADD-ONS of SCADA Pro 17

1. SCADA Pro OCP

SCADA Pro OCP is a new module of SCADA Pro that represents an advanced, real-world, optimum design computing platform for real-world civil engineering structures. The main goal for the implementation of SCADA Pro OCP module is to <u>reduce construction and</u> <u>material cost</u> consistent with the required performance, reliability, quality and safety within an innovative technological framework.

SCADA Pro OCP module provide:

- Advanced and easy to use ribbon-based interface makes structural optimization a single-click process allowing numerous customizable options.
- The option of selecting multiple criteria related to the cost of the structure such as construction cost, construction of materials, and environmental cost during the life span of the structure. These criteria used either as "Objectives" or as "Constraints', which are taken into account in addition to those imposed by the design code regulations.
- Solve optimization problems by selecting the solution algorithm from a list of **deterministic** and **probabilistic search numerical algorithms** that are at the cutting edge of technology, which can replace the "trial and error" traditional process of structural design and with an optimized solution quickly obtained.
- Πολλαπλές επιλογές για τον καθορισμό του εύρους των μεταβλητών σχεδιασμού και την ομαδοποίησή τους είτε σε επίπεδο διατομής ή σε επίπεδο δομικού στοιχείου.
- Multiple options for determining the value range of the **design variables** and grouping them either **by type of cross-section or by type of structural element.**

• Comparison of the initial design with the optimum one.

Commands are grouped into sections according to their type of use.

	ilia 😂 🍓	• 📢 🖗 😡	14	a 0-0.00	4	• •											
	Basic	Modeling	View	Tools	Slabs	Loads	Analysis	e Pos	t-Processor	Members E	esign	Drawing	s-Detailin	g A	ddons	Optin	ization
-	%	<u>í</u>		44	2	1			1-1	*			z	F	R	1	
Objecti Cost	ve Objecti Performa	ve Genera nce Design Bo	al unds	Constrains *	Unit Cost Material	Unit Cost Productivity	Section	Element	Algorithms	Convergence	Equality	Exclusion	RUN	Results	Reset	Help	
	Basic S	iettigns			Formulatio	n	Design	Bounds	S	olve	Fuctio	onalities		RU	JN		

The optimization process is performed in two stages:

• The first stage is the definition of the basic parameters of the project: (a) the optimization criterion (objective function) (b) additional constraints in terms of cost or performance apart from the design code checks

(c) the limits of variation of the cross-sectional dimensions (design bounds) of the structural elements (design variables).

• In the second phase is the definition of the optimization algorithm, the convergence criterion of the iterative solution process and its immediate execution.

After completing the iterative optimization process, it is possible to analyze the results obtained with parallel comparison of the initial parameter values with the optimum values.

Step	Failure	Total	^	Αναφορά
Number	Degree	Cost		🗹 Εξώφυλλο
1	Max	5461.57		🗹 Τεχνική Αναφορά
2	Min	2030.09		🗹 Σύνοψη
3	Init	3906.22		🗹 Στοιχεία Διατομής
4	1.02	4032.28		Αναλυτικά
5	0.00	3649.32		Μηστελέσματα
6	0.00	3611.71		Εμφάνιση Αναφοράς
7	0.00	2951.76		
8	0.00	3380.71		
9	0.00	3126.82		
10	0.00	2805.49		
11	0.00	3054.48		
12	0.00	3050.81		
13	0.00	2768.42		
14	0.00	3422.02		
15	0.00	3326.07		
16	1.02	2737.10		
17	1.07	2762.61	~	Έξοδος

There is also the option of exporting results, analyzing all the parameters of the optimization problem and the optimization history diagram; the value variation diagram of the optimization criterion (objective function) in each step of the iterative process.

The new version of SCADA Pro offers the possibility of creating flat slabs (slabs without the presence of beams) with the finite element method.

The procedure for the modeling of flat slabs requires:

- the 3D Mesh definition,
- the External Boundary creation,

- the Holes automatically creation in place of the Columns,
- the Mesh calculation and the mathematical model calculation.

The command "Flat slabs" includes the commands:

Parameters

Parameters	Flat Slab Design Pa	rameters	×
~~~~	Layer		
	Flat	Flat Slab	$\sim$
	Drop Panel	Drop Panel	$\sim$
	Support Line xx	Support Line 🗙	$\sim$
	Support Line zz	Support Line zz	$\sim$
		OK Cancel	
In the dialog box yo	u define the corre	elation between Layers.	
<ul> <li>Calculation of details</li> </ul>	esign strips		



According to Annex I of EC2 flat slab is divided into design strips. These are the areas that are automatically created by the program on both sides of the Support Line, according to Figure I.1 of EC2.



Select the command Calculation of design strips and the program automatically creates them.

Each Design Strip is divided into sections along its length perpendicular to the Support Line. In each section Scada integrates the internal forces of finite surface elements intersect. By completing this occur the bending moment around the axis of the section. This intensive value used to calculate the armature in each section.

# Display X, Z





# Results

-	
100012	Results
TXT	

This command opens the Results file through the Report.

Each page concerns a Strip Line. Initially described the characteristics of the Strip.

							Page : 1
	S	trip Calci	ulations				
Description	n Value Units Code Description Value						
Floor	1			Starting point	corner	column	9.4.1&2
# of strip	1			Drop panel	Y	es	
Orientation	x-x			Thickness	182.88	(cm)	
Length	815.48	(cm)		Width		(cm)	
Concrete	C20/25			Finishing point	internal	column	9.4.1&2
Ex.	20	(MPa)	Table 3.1	Drop panel	Y	es	
Ē.m	2.20	(MPa)	Table 3.1	Thickness	182.88	(cm)	
Steel	S400s			Width		(cm)	
f _{yk}	400	(MPa)		Minimum reinforcement			
Cover	20	(mm)		Tension reinf.	0.00145	(cm ² /m)	9.2.1.1(1)
Slab thickness	0.25	(cm)		Compression reinf. (% of span reinf.)	25	%	9.3.1.2

Then displayed the reinforcement results above and below in detail for each zone, dividing them into sub-zones.



			Analvsis F	forcement		Тор				
		125.0	0 cm (L _{start} )							
Zone	M (kNm)	Width (cm)	A _{x,rqd} (cm ² /m)	A _{k,prvd} (cm ² /m)	Φ/s	M (kNm)	Width (cm)	A _{x,rqd} (cm ² /m)	A _{k,prvd} (cm ² /m)	Φ/s
Left	-33.909	86.5	5.660	5.660	8/8		127.5		1.415	8/20
L-C	-45.708	52.7	9.744	9.744	8/5		52.7		2.606	8/19
Center	-170.151	105.3	19.129	19.129	12/5		105.3		4.782	8/10
R-C	-44.750	52.7	9.530	9.530	8/5		52.7		2.382	8/20
Right	-72.082	144.7	5.478	5.478	8/9		144.7		1.369	8/20
		125.0	0 cm (Land)			1				
Zone	M (kNm)	Width (cm)	A _{x,red} (cm /m)	A _{kgrvd} (cm /m)	Φ/s					
Left	-44.707	149.7	3.284	3.904	8/12	1				
L-C	-48.725	52.7	10.423	10.423	10/7					
Center	-162.632	105.3	18.175	18.175	12/6					
R-C	-42.495	52.7	9.027	9.027	8/5					
Right	-43.124	144.7	3.240	3.904	8/12					
			Analysis F	Results ar	nd Reinf	forcement			Bot	tom
		125.0	0 cm (Latart)							
Zone	M (kNm)	Width (cm)	Awred (cm/m)	A _{kgrvd} (cm /m)	Φ/s	M (kNm)	Width (cm)	A _{x,red} (cm /m)	A _{kgrvd} (cm/m)	Φ/s
Left	11.110	86.5	1.380	1.380	8/20	52.042	127.5	5.346	5.346	8/9
L-C	2.346	52.7	0.475	1.438	8/20	27.508	52.7	5.752	5.752	8/8
Center	9.371	105.3	0.952	1.438	8/20	55.015	105.3	5.752	5.752	8/8
R-C	2.362	52.7	0.478	1.438	8/20	27.508	52.7	5.752	5.752	8/8
Right		144.7		0.999	8/20	52.965	144.7	3.995	3.995	8/12
		125.0	0 cm (Lend)			1				
	M	Width	Axrad	Akgrid (cm/m)	Φ/s	1				
Zone	(kNm)	(cm)	(cm /m)	(cin mi)		1				
Zone Left	(kNm)	(cm) 149.7	(cm /m)	1.337	8/20					
Zone Left L-C	(kNm)	(cm) 149.7 52.7	(cm /m)	1.337	8/20 8/20					
Zone Left L-C Center	(kNm) 7.314	(cm) 149.7 52.7 105.3	(cm /m)	1.337 1.438 1.438	8/20 8/20 8/20					
Zone Left L-C Center R-C	(kNm) 7.314 8.729	(cm) 149.7 52.7 105.3 52.7	0.742 1.786	1.337 1.438 1.438 1.786	8/20 8/20 8/20 8/20					
Zone Left L-C Center R-C Right	(kNm) 7.314 8.729 27.511	(cm) 149.7 52.7 105.3 52.7 144.7	0.742 1.786 2.052	1.337 1.438 1.438 1.786 2.052	8/20 8/20 8/20 8/20 8/20					

# 3. Punching shear checks

Added in the new version also the punching checks in accordance with EC2. The check is part of the check and design process of the flat slabs which runs automatically, but can also run as an individual check for any column. All data can be set automatically or even manually.





Punching Shear Check		×
Control node C 40 C	combinations combinations ΔN(kN) 240.82: ΔMy(kNm) 8.4002ξ ΔMz(kNm) 31.888ξ Distributed Load.(kN/m2) 0	
Materials (MPa)	Outlines of floors	
Automatic	✓ fck 20 fyk 400 Lines circles	×.
Loaded surface Automatic	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Slab's elements	Steel Reinforcements	
Thickn Automatic	✓ t(cm) 25.4 Automatic ✓ External	
Cover Automatic	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	]
Coefficient $\beta$ Automatic appro: $\sim$ $\beta$ 1.15	Reinforcement     Calculation       Type     Radial       Number of radii per quartile     0         Deletion of the Report     Cancel	

- Production of complete results print out, with detailed reinforcement layout plan (radial or cross), whenever required.
- Details designing.

					Page : 1											Page : 2
Input Data							Check results									
B	161			161.5	1	Descript	tion	Va	lue	Units	EC2	Description		Value	Units	EC2
Description	value	Units	Description	value 1.150	Units	Effective	depth of slat	o(d) 37	7.6	(cm)	(eq6.32)	Basic control p	erimeter	657.0	(cm)	(fig6.15
tt of pode	20		Clob dopth	40.6	(000)	Perimete	Perimeter of the loaded 18		4.0	(cm)	(ea6.53)	(u ₁ )			(4)	(
Combination			Coupr of minforcement	40.0	(cm)	area (u ₀ )				(	()	Design value o	fthe	0.394	(MPa)	(eq6.38
Shear force (V)	846.7	(kN)	Cover of territorcement	2.0	(citi)	Design v	alue of the si	hear 1.4	406	(MPa)	(eq6.38)	snear stress at	u ₁ (V _{Bd,1} )		(	
Distributed load (n)	0.0	(kN/m ² )	Bar size (outer layer)	10	(mm)	stress at	Ub (Vec.o)			(ma u)		Punch, shear n	esistance			
Reduced shear force (Vestal)	846.7	(kN)	Spacing of bars (outer laver)	15.0	(cm)	Maximur	n punching sl	hear 3.6	680	(MPa)	(eq6.53)	reinforcement (	(Vest c)	0.356	(MPa)	(005.47
Bending moment (M.)	-32.7	(kNm)	opaonig of barb (barb high)	10.0	(011)	resistant	≫ (VRd,max)					Constant (v. )		0.050	(1.07)-0)	1000 20
Bending moment (M.)	104.4	(kNm)	Bar size (second layer)	10	(mm)							Constant (vmn)		Peinforr	(IVIPa)	(edp.3)
Shape of loaded area	Rectangular	(	Spacing of bars (second			1ª check	C M < M	S. 4	Hiciar	~~~				- add pu	inching sh	lear
c1 length (along x axis)	46.0	(cm)	layer)	15.0	(cm)	1 Groce	<ul> <li>YEd,0 = YRd,ma</li> </ul>	a lou	in cash	~y		2 rd check: VEd,1	≤ V _{Rd,c}	reinforce	ement	
c ₂ length (along y axis)	46.0	(cm)	Concrete (f _{ck} )	20.0	(MPa)									- increat	se slab lo	ngitudina
c diameter		(cm)	Steel (f _{sk} )	400.0	(MPa)									Ternorci	BILLELI	
Position of loaded area	Interior		Reinforcement pattern	Radial		-					Detailing	results				
Dist. of slab perim. along x (a _k )		(cm)	# of radii of reinforcement in a	0		Descript	tion		Valu	ie Units	EC2	Περιγραφή		Τιμή	Μονάδες	EC2
Dist. of slab perim. along y (a _r )		(cm)	quadrant (circular pattern)	2		Perimete	Br Ucutef		727	.0 (cm)	(eq6.54)	Distance (d ₃ )			(cm)	
			1			(a) - Dist	tance of 1 st p	erimeter				Distance (d ₄ )		000	(cm)	
						loaded a	rcement from	the	18.	s (cm)		Angle (φ)		90.0	ELSIO TONICE	
						1.1						(s _{tiaet} ) - Tangen	itial			
						0.3-d < a	a < 0.5 d		11.3	<=a<=18.0	3 (9.4.3)	distance between link		91.8	(cm)	
						(6 Dist	and a state of the state			1		perimeter				
						(f) - Dist	ance of last	ment	56.6 (cm)			ponnotor				
						Limit: k·d = 1.5 d         56.5         (cm)           (s,) - Radial distance of the         28.0         (cm)				0 (0111)		Limit: 2.0-d		75.3	(cm)	
									(8.4.5)	45) (4 ) 5845			(arriy			
									30.		(0.4.0)	(f _{wd,et} ) - Effectiv	ve	344.1	(MPa)	
									28.0 (			punching shear	r reinf.	044.1	(	
/						permete	is or remord	ement	-		10.10	(A ) - Nocore	1001			(eq6.52
1		<u> </u>				Lamit; 0.7	19.0		20.	2 (cm)	(9.4.3)	area of a link le	eq	1.532	(cm ^c )	
II. /						(Sti) - Ta	ingential dista	ance the tr	91	8 (cm)					010000000000000000000000000000000000000	
1	1					perimete	if in the second se	010 03		o (cm)		area of a link le	ea	1.532	(cm ² )	(eq9.11
/						Limit: 1.5	5-d		56	5 (cm)	(9.4.3)	Diameter of link	k lan			
II						Distance	(D)		18	1 (cm)	(******	chosen	, wy	14	(mm)	
	1 I I					Distance	(d.)		9.9	) (cm)		Area of link lea			. 2.	
1						Distance	(d ₂ )		9.9	) (cm)		chosen		1.539	(cm*)	
\\																
\\	~								Gro	uping of	punching :	shear reinforce	ement		-	
\ \						Group	Number	Φ	N	umber of	ink 1	ink lea 1 st	⁴ link leg of	the	link leg f	of the 1
\\		` <b>•</b> •				of lines (mm)			egs on lir	ne .	(cm)	line stand	s	loaded	area	
	•					1 8 14		14		2		36.6	1		18.	82
	and the second s			2	4	14		1		36.6	2		46.	82		
						100000000000000000000000000000000000000	activities and a state of the									
									-							
11																
(1											Selected Instantes					
<u></u>																