

Example 8

Simulation and solution Flat Plates

CONTENTS

FLA	T PLAT	'ES	
1.	SIMU	ILATION PROCESS	3
2.	SOLU	ITION	
	2.1	Parameters	
	2.2	Calculation of Loading Lanes	
	§ Inst	tructions for the introduction of support lines on flat slabs	
	2.3	Display X, Z	
	2.4	Diagrams X, Z	
	2.5	Results	

FLAT PLATES

Flat slabs are slabs that are created in the absence of beams.

These are closed contours simulated with surface finite elements connected to the supporting columns.

1. Simulation process

Initially we could have created a design file in order to use it as a help file. The basic requirement is that the outlines of the columns should be closed, belong to their own layer and the lines of the outer outline should not pass over them (i.e. they should stop where they meet the line of the column and start again after the column) and they should also belong to their own layer.

Otherwise we can create the floor plan directly in the Scada environment using the design and modelling commands.

1. The process starts by creating a New Project and naming the file.

• #4na-di - 1 • • • •	1.1.1
	211.24
	Trans

2. Then we set the levels. At the level where the Flat Plate will be defined, we turn off the diaphragm mode and select how to connect the nodes of the columns to the surface grid.

Επεξεργασία Επιπέδων ΧΖ	×
Νέα στάθμη Ονομα Πολλαπλή Επεξεργασία Διαγραφή Υψόμετρο (cm) 300 - 0 Ενημέρωση Επαναπροσαρμογή + 0 - - -	ή προσθήκη Επιπέδων ός 0 Προσθήκη
Α/Α Ονομα Υψόμετρο Δ.Λ.Π. Ισοσταθμία 3D 0 0 0.00 ♥ ■ ♥ 1 300.00 ♥ ■ ♥	Επιλογή ολων Απεπιλογή Δ.Λ.Π. Χωρίς Δ.Λ.Π. Ισοσταθμία Ανισοσταθμία Εμφάνιση στο 3D Απόκρυψη στο 3D
Τρόπος Σύνδεσης Κόμβων Στύλων με Πλέγμα Επιφανειακών Σύνδεση με δεσμικές ράβδους με κόμβους επιφανειακών Εξάρτηση στον πλησιέστερο κόμβο του επιφανειακού	Εξοδος
Σύνδεση με δεσμικές ράβδους με κόμβους επιφανειακών Σύνδεση με δεσμικές ράβδους με κόμβους επιφανειακών και των πλευρών της δ Σύνδεση με δεσμικές ράβδους με τους κόμβους του επιφανειακού που ανήκει	

At the bottom of the window there is a choice of the way of connecting the nodes of the columns with the surface grid, for the selected level, we choose the connection with tie rods and with the nodes of the surface grid. At the end we press Update.

3. We activate Level 1 and import the auxiliary file.

· aune · · · · · · · · · · · · · · · · · · ·	Lawren Danie Theore Lawren Lawren Danie Theorem Lawren Lawren Theorem Lawren Lawr	 9 9 0
Treast Codes: Tigs: Takingure . Htm System;		energy Accuracy from the sectors - constant from the Capitale
Nithering from (* 19 7) Comparis C Tola (* South * Robot * Robot * Khipto - Mole doward (* Mole doward * Robot * Robot * Takinto * Takinto		Control of the second s
Thinker, Bankana I.		

4. With the Layers command we convert the lines of the pillars and the outer contour of the auxiliary to Scada lines.

ENTER OF	Στρώσεις Βοηθητικ	ού αρχείου	×
Στράματος Μεταφορά	Αριθμός 0 A-Wall	Орато́ ¤ ¤	Επιλογή ολων Ακύρωση Επιλογής
🚟 💽 Διαγραφή	Beam COLUMNS	*	Ορατό Μη ορατό
Γιάτου Στρώσεων	Defpoints WIN	a a	Μετατροπή Γραμμών,Τόξων
ο Περκυτροφή			OK Cancel

HODAD N	Ιοντέλοποιηση Έρφά	ντίτη Εργαλισια Ι	Thomas	Фертия 4	maxim	Anarika	ama a	μάστασιολόγι	dad En	urtumm.
🧊 🍏	Σκαροδεμα Μεταλλικά	Πεδιλο Πεδιλοδονος	111 1A.		ο κομβο μαη	< MORE	Avayvupia Avayvupia		Ελεγχοι Ελεγχοι Μοντέλου	(Mapopa)
Тпооте Абарати	Berebe,	Deparkinger	Empore	1063	Mehn		and you	erukuurter	α	
							7.6	et and a second second		
							Ace	ιαi		
							=1	a construction of the state		
							C Low	αι Θεμελίωση	ic.	
ναγνώριση Διατι	autoremo Det De									
a set a second state of a second state	ομων από υχι - υν	να Αρχείο					X			
entran and and a	ομων απο υχι - υν	vg Αρχείο	14	1.00			×			
	uboian francúcia (Ace	νg Αρχείο	Egop	ομογή (Οροφ	01)		×			
Επιλογές	νώριση διατομών (Δοκ	νg Αρχείο ιοί - Στύλοι)	Eφap Anó	ομογή (Οροφ 0-0.00	oi)	~	×			
Επιλογές Συνολική Αναγ Επιλογή στρώσης	νώριση διατομών (Δοκ ; γιο αναγνώριση	νg Αρχείο ιοί - Στύλοι)	Εφαρ Από Εως	ομογή (Οροφ 0-0.00 1-300.00	oi)	~ ~	× 1			
Επιλογές Συνολική Αναγ Επιλογή στρώσηκ Στύλων COLUM	νώριση διατομών (Δοκ γίο αναγνώριση ΝS	νg Αρχείο ιοί - Στύλοι)	Εφαρ Από Εως	ομογή (Οροφ 0-0.00 1-300.00	01)	~ ~	×			
Επιλογές Συνολική Αναγ Επιλογή στρώση Στύλων COLUM Δοκών	ομών από ύχι - Ον νώριση διατομών (Δοκ ; για αναγνώριση INS	νg Αρχείο καί - Στάλοι)	Εφορ Από Εως	υμογή (Οροφ 0-0.00 1-300.00	oi)	~	×			
Επιλογές Συνιολική Αναγ Επιλογή στρώσης Στώλων COLUM Δοκών Προβόλων	ομών από ύχι - Ον νώριση διατομών (Δοκ ; για αναγνώριση ΝS	νg Αρχείο αι - Στάλοι)	Eqap Anó Ewç Av	ομογή (Οροφ 0-0.00 1-300.00 τόμοτη Αναγ	ιοι) νιώριση Δ	νο νώτομών	×			
Επιλογές Συνολική Αναγ Επιλογή στρώσης Στώλων COLUM Δακών Προβόλων Αυτόματη Εισ	νώριση διατομών (Δοκ γία αναγνώριση ΝΕΞ Ιαγωγή και Προδιαστα	νg Αρχειο ωί - Στύλοι) σιολόγηση Πεδίλων	Εφορ Από Εως Αν	ομογή (Οροφ 0-0.00 1-300.00 τόμοτη Αναγ	ιοι) ννώριση Δ Στομών Εr		×			
Επιλογές Συνολική Αναγ Επιλογή στρώσης Στώλων COLUM Δακών Προβόλων Αυτόματη Εις Αυτόματη Εις	ομών από ύχι - Ον νώριση διατομών (Δοκ για αναγνώριση Ικ5 Ιαγωγή και Προδιασται ιαγωγή και Προδιασται	νg Αρχείο ωί - Στύλοι) σιολόγηση Πεδίλων ιακών	Egop Anó Ewç Av	ομογή (Οροφ 0-0.00 1-300.00 τόματη Αναγ αγνώριση Δια	ιοι) νώριση Δ πορών Εr	ν ατομών υλεκτικά Έρλης	×			

5. With the command Identify Cross-sections Columns

The cross-sections of the poles belonging to the corresponding Layer are automatically identified.

6. The next step involves defining and creating the surface mesh that defines the flat plate.

ημιουργία (ομάδων Πλει	μάτων				
Περιγραφή	Flat Slab		γλικό Σκυρό	ōeµa		C28/25
Στοιχεί Plate	•	Ks (Mpa/cm)	🖲 Ισοτροπικό	(Орвотропио	Γωνία 0
Πυκνάτητα	Πλάτος (cm)	Πάχος (cm)	Exx (GPa)	30	Gxy (GPa)	12,5
0.20 ~	50	20	Eyy (GPa)	30	£ (kN/m3)	25
Περιγραφ	ές 🗌 En	κράν.Πλέγματος	Ezz (GPa)	30	etx*10-5	1
Ομάδων Πλεγι	iátwy En	στητόδαπ	vxy(0.1-0.3)	0.2	aty*10-5	1
			voz(0.1-0.3)	0.2	aby*10-5	1
			vyz(0.1-0.3)	0.2	Exc * v	ocz = Eyy * voy
			Ενημέρωσ	ŋ .	Volullar finkning	-
			Διαγραφή		Seen	OK
			Néo		5000	Εξοδος

and with the command Outer Boundary we define the outline of the grid. The definition of the outline can be set automatically, simply by selecting one of the lines that define it and right-clicking.

Prerequisites:

- the contour shall be closed and free of ramifications; and
- the external columns are excluded from this.

We should therefore define an outer boundary like the one depicted in the figure with a white continuous line.

The outer boundary of the hole in the centre will later be defined as the Hole:

In order to create such a contour in Scada without the lines of the poles that would create unwanted branches we have to follow the following procedure:

We select from the Basic the Edit Layers and with Select all we make all the layers Layers Not visible and Not editable except "Lines, Circles".

Επεξεργασία Στρώσεων					×
Εργασίας Γραμμές, Κύκ	λοι				Επίπεδα ΧΖ - Οροφοι
Νέο Γραμμές, Κύκλα	וכ				Update
Αριθμός	Орато́	Επεξεργάσιμο	Χρώμα	^	Επιλογή όλων
Γραμμές, Κύκλοι Υπ/τα Σκυροδέματος Μανδύες Σκυροδέματος Δοκοί Σκυροδέματος Πεδιλοδοκοί Συνδετήριοι Δοκοί Πέδιλα Μεταλλικα Υπ/τα	₩ * * * * * * * * * * * * *		2 10 6 31 37 38 12 12 34		Αποεπιλογή όλων Ορατό Μη ορατό Επεξεργάσιμο
Μεταλλικές Δοκοί Διαγραφή Δεδομένων Μοντέλο Συνολικά	æ πέδου XZ		34	γ Μοντέλο	Mη Επεξεργάσιμο

With the Delete command we then delete the lines of the poles that are outside the outline of the plate.

C -/ 🗙	III 5 💷	• 🍠 xz 🔹 1-300.0	•••• 😟
Ιεριστροφή Επόκτοση Διαγροφή «Διαγροφή Επιτεργάσεια	Πίνακας Πολλαπλές (Array) * επιλογές	Topppic Kikkoi	- Ekonyn Alle
◎ @ � X <u>-</u> <mark>X @</mark> @	αγραφή ενός	1 9 9 8 4 6	
			0
		Þ	لح
			Ę

Select the command and left-click on one of the contour lines. Right click and the dialog box for defining the subgrid appears.

Εισαγωγή Επιφανείας	
Перурарђ (\$1	
Ptata 0	is (Mpa/cm)
 Пλάτος (cm) 50 20 🖂	ίπετεδότητα
 OK Ca	ncel

In case the perimeter at any point is not closed, an **X** will appear on the screen at that point.

We select the Holes command and show the outline of the hole in a manner similar to the outer boundary, left click on a line and right click to complete.

Οπές

Having completed the definition of the shape and properties of the mesh, the next step is to calculate it. We select the command and the list of subgrids appears in the dialog box that opens. In this particular example there is a subgrid S1. The number inside the brackets (1) indicates the number of holes defined for this grid.

Υπολογισμός Ομάδων Πλεγμάτων		×
1 FlatSlab	Υπολογισμός	
Αριθμός Ορατό Χρώμα σ 1 S1(1)	Αλλαγή Φοράς Αυτο Χ Υ Ζ ΓΡΑΜΜΗ Αρχή Τέλος Χ Ο Ο Υ Ο Ο Ζ Ο Ο Επιλογή όλων Ορατό Μη ορατό Δημιουργία Οπών στις θέσεις των Στύλων Ακύρωση - Διαγραφή Τρύπες Γραμμές Σημείο Ιδιότητες	
Εξοδος	Πλέγματος Μαθηματικού	

However, in addition to the central hole, there should also be holes in the position of the inner posts. These holes are automatically created by selecting the command

Δημιουργία Οπών στις θέσεις των Στύλων

(not in the case of circular sections) and their number is added to the value in brackets.

OBSERVATION

In circular sections the contour is a circle with the same starting and ending point. This creates an inability to find a contour. The solution for these cases is to draw 2 arcs at the boundaries of the circle and use the Hole command to manually define the round holes.

At the end there will be 7 holes set

The Υπολογισμός command is used to calculate the grid.

The modelling is completed with the creation of the Mathematical Model

▲ NOTE: Immediately after creating the Surface Math Model, always remember to open the "Grid Group Calculation" window and press "Auto".

1 FlatSlat))		~		Yn	okoyu	σμö		-19
Αριθμός	Ορατό	Χρώμα σ	8	AA	λαγή	Фор	άς	Auto	

- > After the **Modeling**, the **Load Import**, the **Analysis and** the **Load Import** follow as usual. and the creation of **the Combinations**.
- In the **Results** field we can read the values of the various quantities either with the help of the colour display or by reading the values of the selected size within the surface of the surface element by activating the Values in the lower horizontal bar.

		in the second	-33.72	ALLEY IN		and the	101	arth.	diam's	anna (B	- ingen	in your i	10001	-		upla by High	10
idine.	inter (b)	i - Seta	4	- 111 - 1		- 108	Junci	and a	5	yes s	int Al	Chear All	787	-		and and	
173.0	18.6.1	(Upper	1641	10.11	914 (100	ę		- U.S.	data a	alono - an					Name of Street	y search	
	-	-3500	and the		4100			0.10	-1156	12:06-0	(<u></u>	2114					
	1.1107					0000	-8.57	12	-11.99	izan 3	in a					X	ζ
		-15.74	-19235	-641	6.60	3.00	-dai	025	-164	12.99	600 ²	1.47				1	
-	100	9360	17.5V	1.01	416	-811	1000	-011	-340		aurs	w.ta			in the second se		
	-7.93	4.45	324	2.15	100	12	-17		-7.55	dan.	1000	40.00			ы. 1104 11 ¹¹ 182	6)	
2	1622	6.07	201	ann -	146	124	-	-100	655	(15,21	TANK I	58.0	30.00	and a	-inter-	145	
9))))(約)	144	639	1019) 1019	366	0.05	460	an	-13	0.96	10 10	-	140			A statute	

As well as the value of the isovalue on them

In the Dimensioning field is the Flat Plates command and the necessary subcommands to solve them.

So after calculating the combinations, we select the command and follow the procedure below:

2.1 Parameters

Παράμετροι διαστά	μετροι διαστασιολόγησης Flat Slab er					
Flat	Flat Slab	~				
Drop Panel	Drop Panel	\sim				
Support Line xx	Support Line 🗙	\sim				
Support Line zz	Support Line zz	\sim				
	OK Cancel					

πεξεργασία Στρώσεων					×
Εργασίας Γραμμές, Κύ	куоі		Eninεδα XZ - Οροφοι		
Nέo Flat Slab			Update		
Αριθμός Ξύλινοι Μετωπικοί	Ορατό 🙀	Επεξεργάσιμο 🗬	Χρώμα	^	Επιλογή όλων
Ξύλινα Αντιαν.Οριζοντια	Ø	- -	7		Αποεπιλογή όλων
Ξύλινα Αντιαν.Κατακόρυφα 	a a	∎ ∎	8		Ορατό
Flat Slab	Ø	Ę	8		Μη ορατό
Drop Panel	Ø	₽	8		
Support Line xx	Ø	₽	8		Επεξεργάσιμο
Support Line zz	Ø	∎°	8	~	Μη Επεξεργάσιμο
Διαγραφή Δεδομένων					
Μοντέλο Συνολικά Βάσει επ	ιπέδου XZ	Βάσει Στρώσης	Móvo I	Μοντέλ	o OK Cancel

In the dialog box you set the correspondence of the Layers.

Scada's default list of Layers includes the layers related to the Flat Plates.

• In the "Flat Slab" layer we transfer the outline of the floor plan (including the external columns) and assign it to the "Flat" layer.

Draw the outline of the floor plan with lines.

To transfer the contour lines from the "Lines-Circles" layer to the "Flat Slab" layer,

- Freeze all Layers, except "Lines-Circles"
- Select the Multiple Options command
- Left-click to select all the lines of the floor plan contour
- Right click to complete
- In the dialog box, in the Design, we change the Layer to "Flat Slab"

Ani malon	Tabletic Kindow	2
DI Trauttaine	Derthin	-
🗆 Anó spieja	Memok/awlor, shower Trokhyan Ernaphonang Madagarawa Movenika Madagarawa Ernapavonaki Trokhyan 20 Trokhyan 20 Trokhyan 20	~
- 2m spápa	Micraik, Vitocruskápato Micrai, Lossof Micrai, Lossof Micrai, Kapikočosovi Micrai, Micraineski Micrai, Micraineski Micrai, Micraineski Micrai, Aurens Kartscolg ogo Šubane, Kosof Subane, Kosof Subane	

For more convenience we can select the "Flat Slab" layer from the beginning, immediately after selecting the Line or Polyline command, so the outline belongs to the correct layer without having to be moved. Similarly, in the "Drop Panel" layer drag the Lines that define area around the poles, where you will increase the thickness of the slab locally.

"Drop Panels" are optionally inserted around the pillars of the slab relieving it of shear stress.

 In the same way, in the Layers "Support Lines xx" and "Support Lines zz" you transfer the Lines that define the Support Lines.

These are lines that enter in both X and Z directions between successive points on the plate. They usually connect pillar nodes and end at the contour of the slab.

Drop Panels and Support Lines

A Based on the Support Lines you define, the corresponding Loading Lanes will be created (design strips).

2.2 Calculation of Loading Lanes

According to Annex I of EC2 the flat plate is divided into Loading Lanes. These are areas automatically created by the program on either side of the Support Lines, according to Figure I.1 of EC2.

You select the Calculate Load Strips command and the program automatically creates them. Each Loading Strip is divided into sections along its length perpendicular to the Support Line. In each section Scada integrates the internal forces of the finite surface elements of the intersecting sections. From this integration the bending moment about the axis of the section is obtained. This intensive quantity is used to calculate the reinforcement in each individual section.

§ Instructions for the introduction of support lines on flat slabs

- 1. The support lines should start from a support column and end in a support (or free end). In all cases they must include at least one support.
- 2. The support line should only reach the contour of the plate when it is free edge. Otherwise it may stop at the contour or at the node of the column.
- 3. When the boundary conditions (i.e. what is to the right and left of the support line) change along the line, the line must break at these points.

2.3 Display X, Z

You choose to display the Charge Strips in both directions to display them.

Loading strips along the X and Z axis

2.4 Diagrams X, Z

2.5 Results

Αποτελέσματα

The Results command opens the results file from within the Report.

Each page is for one Charging Lane.

First, the characteristics of the Strip are described.

						Page : 1				
Strip Calculations										
Value	Units	Code	Description	Value	Units	Code				
1			Starting point	interna	l column	9.4.1&2				
1			Drop panel	N	lo					
x-x			Thickness		(cm)					
543.34	(cm)		Width		(cm)					
C20/25			Finishing point	interna	l column	9.4.182				
20	(MPa)	Table 3.1	Drop panel	No						
2.20	(MPa)	Table 3.1	Thickness		(cm)					
S400s			Width		(cm)					
400	(MPa)		Minimum reinforcement							
20	(mm)		Tension reinf.	0.00143	(cm ² /m)	9.2.1.1(1)				
0.20	(cm)		Compression reinf. (% of span reinf.)	25	%	9.3.1.2				
	S Value 1 543.34 C20/25 20 2.20 5400s 400 20 0.20	Strip Calct Value Units 1 1 543.34 (cm) C20/25 20 20 (MPa) S400s 400 400 (MPa) 20 (mm) 0.20 (cm)	Strip Calculations Value Units Code 1 -	Strip Calculations Value Units Code Description 1 Starting point Drop panel x-x Thickness Width C20/25 Finishing point 20 (MPa) Table 3.1 2.20 (MPa) Table 3.1 400 (MPa) Minimum reinforcement 20 (mm) Tension reinf. 0.200 (cm) Compression reinf. 0.200 (cm) Compression reinf. 0.200 (cm) Compression reinf.	Strip Calculations Value Units Code Description Value 1 Starting point interns 1 Drop panel N ×-x Thickness N 20 (MPa) Table 3.1 Drop panel N 2.20 (MPa) Table 3.1 Drop panel N \$400s Minimum reinforcement 0.0014: 0.0014: 0.20 (cmm) Tension reinf. 0.0014: 25	Strip Calculations Value Units Code Description Value Units 1 Starting point internal column 1 Drop panel No x-x Thickness (cm) 543.34 (cm) Width (cm) C20/25 Finishing point internal column 20 (MPa) Table 3.1 Drop panel No 2.20 (MPa) Table 3.1 Drop panel No \$400s Mainimum reinforcement (cm) (cm) 0.20 (cm) Tension reinf. UUU14: (cm²/m) 0.20 (cm) Compression reinf. 25 %				

Then the results of the upper and lower arming are shown in detail for each zone, dividing them into sub-zones.

- Left-Right -> red zone
- L-C R-C-> blue belt
- Center-> blue zone

			Analysis (Results ar	orcement		Тор			
		135.8	4 cm (L _{start})							
Zone	M (kNm)	Width (cm)	A _{x,rqd} (cm ² /m)	A _{k,grvd} (cm²/m)	Φ/s	M (kNm)	Width (cm)	A _{x,rqd} (cm ² /m)	A _{kprvd} (cm ² /m)	Φ/s
Left										
L-C										
Center	-9.924	53.2	3.234	3.234	8/15		53.2		0.962	8/20
R-C	-7.132	53.2	2.306	2.474	8/20		53.2		0.747	8/20
Right	-5.426	106.3	0.865	2.474	8/20		106.3		0.618	8/20
135.84 cm (Level)										
Zone	M (kNm)	Width (cm)	A _{x,red} (cm /m)	A _{kgrvd} (cm /m)	Φ/s					
Left										
L-C										
Center	-11.747	53.2	3.846	3.846	8/13					
R-C	-9.185	53.2	2.987	2.987	8/16					
Right	-2.227	106.3	0.352	2.474	8/20					
			Analysis (nd Reinf	orcement			Bot	tom	
		135.8	4 cm (Latart)			271.67 cm (L _{centre})				
Zone	M (kNm)	Width (cm)	Axrad (cm /m)	A _{send} (cm /m)	Φ/s	M (kNm)	Width (cm)	A _{x,rqd} (cm /m)	A _{kgnd} (cm /m)	Φ/s
Left										
L-C										
Center		53.2		0.618	8/20	4.511	53.2	1.448	2.474	8/20
R-C		53.2		0.618	8/20	4.511	53.2	1.448	2.474	8/20
Right		106.3		0.618	8/20	7.025	106.3	1.123	2.474	8/20
		135.8	4 cm (Lend)			1				
Zone	M (kNm)	Width (cm)	Ax _{jad} (cm /m)	A _{sgrvd} (cm /m)	Φ/s					
Left										
L-C										
Center	3.827	53.2	1.225	1.225	8/20					
R-C	2.949	53.2	0.941	0.941	8/20					
Right	6.372	106.3	1.018	1.018	8/20					