

Example 7

Valuation of a building from Load-bearing masonry

	NTS	
CONTENTS	5	2
FORFWOR	D	4
		л
INTRODUC		4
THE NEW	ENVIRONMENT	4
1. GEN	ERAL DESCRIPTION	6
	GEOMETRY	6
	MATERIALS	6
	REGULATIONS	6
	LOADING ASSUMPTIONS - ANALYSIS ASSUMPTIONS	6
	Observations	7
2. DAT	A IMPORT - MODELLING	8
21		8
2.1		۵
2.2.	VECTOR MODELLING	
231		14
2.3.1		16
2.3.2		20
2.4.1	DETERMINATION OF SUBGROUPS OF GRIDS	22
2.4.2	PLATE MODELLING WITH DEFINITION OF NEW SUB-PATTERNS	24
2.5	GRID CALCULATION	26
2.6	MATHEMATICAL MODEL CALCULATION	
2.7	INTERLAYER MASONRY	
3. IMP	ORTATION OF GOODS	
3.1	MANUAL LOAD INSERTION	
3.2	AUTOMATIC LOAD DISTRIBUTION	35
4. ANA	LYSIS	
11		36
4.1		
5. RESU	JLTS	40
5.1	DISPLAY OF CARRIER DEFORMATIONS WITH SURFACE ELEMENTS	40
5.2	CHECKING THE LOAD-BEARING MASONRY ACCORDING TO THE CRITERION OF THE CLASS	41
5.2.1	DEFINITION OF MATERIAL PARAMETERS	41
5.2.2	CRITERION RESULTS	42
6. DIM	ENSIONING	46
6.1	CREATION OF A DIMENSIONING SCENARIO FOR THE CONTROL OF LOAD-BEARING MASONRY ACCORDING TO THE	EUROCODE:
6.2		17
0.2	LUAU-DEAMING IVIASUNAT CUNTAUL IN ACCURDANCE WITH DUILDING CUDE & PART S	4/ 51
6.2.1	Control Total	
6.2.2	Incorporation of the provisions of the CPR	J2 55
6.24	4 In-plane bending and shearing	
6.2	5 Bending out of level	
6.3	Sizing of the partitions	

7. ENH	IANCIES	
7.1	REINFORCEMENT WITH MANTLE	70
Ма	sonry with concrete sheathing - Remarks:	
Cor	nparison of results before and after insertion of the sheathing in an indicator wall	
7.2	REINFORCEMENT WITH INORGANIC MATRIX FIBRES (IAM)	74
7.3	REINFORCEMENT WITH METAL RODS	76
7.4	REINFORCEMENT WITH MASS AND DEEP GROUTING	
7.5	Show reasons for depletion with Color Grading	

FOREWORD

The new upgraded SCADA Pro, the result of the evolution of Scada, is a new program that includes all the applications of the "old" one and incorporates additional technological innovations and new features.

SCADA Pro offers a single integrated environment for the analysis and design of new structures, as well as the control, evaluation and enhancement of existing ones.

It combines linear and surface finite elements, incorporates all the current Greek regulations (N.E.A.K., N.K.O.S., E.K.O.S. 2000, E.A.K. 2000, E.A.K. 2003, Old Earthquake, method of allowable stresses, KAN.EPE) and the corresponding Eurocodes.

It offers the designer the possibility to design structures of different materials, concrete, metal, wood and masonry, pure and composite.

With the use of new cutting-edge technologies and based on the requirements of designers, a program was created with a number of smart tools with which you can create the model of any constructionprocess it on site and analyze and design the final structure in simple steps, even for the most complex studies.

INTRODUCTION

This manual was created to guide the designer in his first steps in the new SCADA Pro environment. It is divided into chapters and based on a simple example guide.

Each chapter contains information useful for understanding both the commands of the program and the procedure to be followed in order to carry out the introduction, analysis and control of a load-bearing masonry structure.

THE NEW ENVIRONMENT

In the new interface SCADA Pro uses the technology of RIBBONS for even easier access to the commands and tools of the program. The main idea of the Ribbons design is to centralize and group similar commands in the program, so that you can avoid navigating through multiple levels of menus, toolbars and tables, and make it easier to find the command you want to use.

The user has the option, for the most frequently used commands, to create his own group of commands for easy access to them. This toolbox is maintained after closing the program and

you can add and remove commands as well as move it via "quick access toolbar customization".

(inell	umar lonit Assec Toollie
	Stard Block
	nee Germanit.
	Busine Street Balant
	OTHER DISTORT

¥ - 💀
🕀 🔏 Γραμμές
🦾 Τόξα
🛨 🗂 🗖 🗠 🗛
Ξ···· Στύλοι
🕀 📥 Πέδιλα
🗄 📥 Κόμβοι
🗄 🖦 Μέλη δοκών
🗄 📲 📱 Μέλη στύλων

The new SCADA Pro environment displays on the left side of the screen all entities of the construction categorized in a tree format either per level or for the whole building as a whole. This categorization easy identification of any element and by selecting it it is displayed in a different color in the entity. At the same time, the level to which it belongs is isolated , while its properties displayed on the right side of the screen with the possibility of modifying them directly. This function can be executed bidirectionally, i.e. the selection can be made graphically on the vector and the element will automatically appear in the tree with its properties on the right of the

of commands is displayed with the right mouse button and this menu changes depending on the section of the program that is active.

Τάιότητες	-1 ×
21: 21 🗐 🍠	
A/A	5
Στρώση	Δοκοί Γκυροδέμπτ.
Храде	17
E furient E	
YParco	Σκύρόδιμα
Ποιότητα	C16/20
Διατομή	Ορθογωνική δοκό:
Exava	↓ ↓ +bev+
bw	25.00
h	50.00
hf	15.00
bm	89.00
Fuvio	0.00
Ανεστρομένο	12
Περισσότερα	

The "Properties" list displayed on the right, automatically displays the properties of the selected item and allows you to quickly change and modify them.

1. GENERAL DESCRIPTION

Geometry

The ground floor building under study, made of load-bearing masonry, includes 10 external facades with openings and 6 internal facades.

Materials

For the construction of all the walls of the carrier, a double wall will be used, with natural carved stone 20x20x25 and cement mortar M5, called "Stone wall M5 0.50". Concrete of C20/25 quality will be used for the slabs and B500C quality steel for the reinforcement. The building will be considered to be staked at its base.

IRE Regulations

Eurocode 8 (EC8, EN1998) for seismic loads. Eurocode EC8-3 for the assessment of load-bearing masonry buildings under seismic loading.

Loading - analysis assumptions

Dynamic Spectral Method with homosynchronous torsional pairs.

The loadings according to the above analysis method in SCADA Pro are as follows:

- (1) G (permanent)
- (2) Q (mobile)
- (3) EX (epicyclic loads, earthquake forces at XI, from dynamic analysis).
- (4) EZ (epicyclic loads, ZII earthquake forces, from dynamic analysis).
- (5) Erx ± (epicentric torsional moment loads resulting from the epicentric forces of the earthquake

XI displaced by the random eccentricity ±2etzi).

(6) $Erz\pm$ (epicyclic torsional moment loads resulting from the epicyclic forces of the earthquake ZLI displaced by the random eccentricity $\pm 2e\tau xi$.

(7) EY (vertical seismic component -earthquake by y- from dynamic analysis).

Comments

All the commands used in this example, (and all the other commands in the program) are explained in detail in the Manual that accompanies the program.

2. DATA IMPORT - MODELLING

2.1 Modelling of an existing load-bearing masonry structure:

SCADA Pro includes a masonry library while offering the ability to automatically create load-bearing masonry bodies from the contours of the floor plan and edit elevations through standard construction.

1 The standard construction tool can be used in two ways to meet all requirements.

, to create a new file. In the dialog box that appears, you define the details of your new study.

Νέα Μελέτη	×
Μελέτη Ονομασ ΑΡΕΤΟΙΧ1 😓 Info Αποτίμηση υπάρχουσας Φ.Τ.Ι	
Θέση <u>Folders:</u> c:\meletes Drives:	
О21704Аf ОК 0416086 071614_1 071722 11717 1392017 Сancel	

The file name must consist of <u>a maximum of 8 Latin characters and/or numbers, without spaces and</u> without the use of special characters (/, -, _) (e.g. APFTOIX1). The program automatically creates a folder where it enters all your study data. The "Location" of the folder, i.e. the place where this folder will be created, must be on the <u>hard disk.</u> We suggest that you create a folder in C (e.g. MELETES), where all SCADA studies will be located (e.g. C:WELETES\APFTOIX1)

2.2. Masonry library for wall definition :

Within the "Modelling" Module, in the "Libraries" group, the "Masonry" command opens the masonry library:

Μπατική ο	πτο πλιθοδομή-M2 25 cm	~		Τύπος Υφ	ιστάμενη	
νομα	Μπατική οπτοπλιθοδομή	M2 25 cm		Μανδύας Πάχος (cm) 0	Μονόπλευρος	
ύπος 🤇	Φέρουσα 🗸 🗸	Μονός τοίχος 🗸 ?		Σκυρόδεμα	Χάλυβας	
				C20/25 🗸	S500	4
Λιθόσωμα	Οπτόπλιθος κοινός 6χ	9x19 ~	-	⊕ 8 / 10 cm fRd	o,c(MPa)=	
	Πάχος (cm) 25	fb=1.6733 fbc=2.0000 ɛ=15.00	_	Αγκύρωση χωρίς πρόσθ	ετη μέριμνα	1
toviaµa	Τσιμεντοκονίαμα-Μ2	~				
	Γενικής εφαρμογής με	μελέτη συνθέσεως fm=2.0000				
ντηρίδες	? L1 (cm) 0	t1 (cm) 0 t2 (cm) 0				
Σκαφοειδ	ής τοίχος					
Συνολικό	πλάτος λωρίδων κονιάμ	ατος g (cm) 0 ?				
				Κατακόουσοι Αουοί πλ	noac (83.6.2)	1
			THE PARTY	Οριζόντιος Αρμός πάχο	ους >15 mm	1
Νιθόσωμα			t1 ■ t2		25	_
	Πάχος (cm) 0			ο Παχος (τσοουναμο) (cm)	23	_
'oviana	1			Ειδικό Βάρος (KN/m3)	15	
ютаро			Βιβλιοθήκη	Θλιπτική Αντοχή fk (N/m	m2) 0.7943	38
Αντηρίδες	? L1 (cm) 0	t1 (cm) 0 t2 (cm) 0	Λιθοσωμάτων Κονιαμάτων	Μέτρο Ελαστικότητας (GPa)	700 0.56	_
				Αρχική διατμητική Αντο; fvk0 (N/mm2)	vi 0.1	_
				· · · · · · · · · · · · · · · · · · ·		
Σκυρόδεμ	ια πληρώσεως fck (N/mi	n2) Πάχος (cm)	Nέo	Μέγιστη διατμητική Αντο fvkmax (N/mm2)	0.108	76
Σκυρόδεμ C20/25	ua πληρώσεως fck (N/mi 20	n2) Πάχος (cm) 0	Νέο Κσταχώρηση	Μέγιστη διατμητική Αντο fvkmax (N/mm2) Καμιπική Αντοχή fxk1	οχή 0.108	76
Σκυρόδεμ C20/25 ιίπεδο Γνα	ια πληρώσεως fck (N/mi 20 ώσης ΕΓ1:Περιορισ	m2) Πόχος (cm) 0 μένη ν Στάθμη Ποιοτικού ελέγχου 1 ν	Νέο Καταχώρηση Έξοδος	Μέγιστη διατμητική Αντο fvkmax (N/mm2) Kαμιπική Αντοχή fxk1 (N/mm2) Kαμιπική Αντοχή fxk2 (N/mm2)	0.1087 0.1 0.2	76

Where, you either select one of the registered masonry units or create a new one, by typing a name, selecting the *TYPE* and setting the corresponding properties for the **Stone**, **Mortar**, **Admixture**, **Concrete Filler** and **Sheathing**. You also define from the corresponding option whether the masonry is load-bearing or masonry infill.

Lepending on the selection of the TYPE of masonry, some fields in the dialog box are activated or deactivated.

The definitions of the different Types are displayed by selecting ? on the right.

EXAMPLE:

Name: wall1

Type: Hollow wall with core

ιότητες	Τοιχοποιίας	6			
Τσιμεντα	ολιθοδομή-M2 25 cm		~	Τύπος Υφιστάμ	ενη
Ονομα	Τσιμεντολιθοδομή-M2 25 cr	n		Μανούας Πάχος (cm) 0 Μου	όπλευρος 🚿
Γύπος	Φέρουσα 🗸 Κ	ζοίλος τοίχος με πυρήνα 🛛 🗸 🗸	?	Σκυρόδεμα Χάλυ	ιβας
Διθόσκοι	ια Οπτόπλιθος διάτορτος 6	v9v19		C20/25 ~ S50	0 `
nicocaț	Пахос (cm) 9	fb=3 3467 fbc=4 0000 c=15 00		Φ 8 / 10 cm fRdo,c(N	1Pa)= 0.00
	Tausyapyoulaua.M2			Αγκύρωση Χωρίς πρόσθετη μ	ν ονιμο
roviaha		slitter of webicrose fm-2,0000		P. P.P.	
Δντηρίδι		t1 (cm) 0 +7 (cm) 0			
2καφοα Συνολιι	ασης τοιχος κό πλάτος λωρίδων κονιάματι	oc a (cm) 0 7			
100 m					
tef=9.	.00 K=0.45 fK=1.2905			Κατακόρυφοι Αρμοί πλήρεις	(&3.6.2)
1989	- · · · · ·		t1	Οριζόντιος Αρμός πάχους >	15 mm
Λιθόσωμ	μα Οπτοπλίθος οιάτρητος 6	√xaX1a ∠	r	Πάχος (Ισοδύναμο) (cm)	25
	Πάχος (cm) 9	fb=3.3467 fbc=4.0000 ε=15.00		Ειδικό Βάρος (KN/m3)	17.8
(oviaµa	Τσιμεντοκονίαμα-Μ2	2		Θλιπτική Αντοχή fk (N/mm2)	1.29047
	Γενικής εφαρμογής με μι	ελέτη συνθέσεως fm=2.0000	Βιβλιοθήκη Λιθοσωμάτων		
Αντηρίδε	ες ? L1 (cm) 0	t1 (cm) 0 t2 (cm) 0	Κονιαμάτων	(GPa)	1.29047
tef=9.	.00 k=0.45 fk=1.2905			Αρχική διατμητική Αντοχή fvk0 (N/mm2)	0.1
Σκυρόδ	ίεμα πληρώσεως fck (N/mm2) Πάχος (cm)	Nżo	Μέγιστη διατμητική Αντοχή	0.1506
C20/25	< 20	7 Ε=30.00 ε=25.0	1400	IVKindx (N/min2)	
πίπεδο Γ	7. www.	Στάθυη Ποιοτικού	Καταχώρηση	(N/mm2)	0.1
	ΕΓ1:Περιορισμέ	νη 🗸 ελέγχου 1 🗸	Εξοδος	Καμπτική Αντοχή fxk2	0.2
				(Auntry)	

- In the fields wall1 & wall2 you set for the
 - stonework: the type and thickness
 - mortars: the kind

and these options automatically update the corresponding coefficients $fb=3.3467 fbc=4.0000 \epsilon=15.00$

Βιβλιοθήκη Λιθοσωμάτων Κονιαμάτων

In the **Stone and Mortar Library** you will find ready-made stone, mortar and masonry typologies.

The user has the possibility to enter other mortars and mortars, simply by typing the name and specifying the type and group, for compressive strength (which is automatically updated) and selecting "New".

You can also change the type and group of an existing stone or mortar and update it by clicking on "Entry".

In "Masonry" select from the stone and mortar lists, and create a new masonry type by clicking on "New". The specific weight and strength are calculated automatically.

For this example, the following were selected :

Lithosome:

Consolidated:

ισοσωματ					N	
νθοσώματα		к	ονιάματα	r.	63	
Οπτόπλιθο	ς διάτρητος 6χ9χ19	~	Γσιμεντοι	koviaµa-M2		~
Ονομα	Οπτόπλιθος διάτρητος 6χ9χ19	c	νομα	Τσιμεντοκονίαμα-Μ2		
Γύπος	Οπτόπλινθος	~ T	ύπος	Γενικής εφαρμογής με μελέτη συνθ	λέσεως 🗸 🗸	?
Κατηγορία	ΙΙ 🗸 ? Ομάδα	2 🗸 🦂 A	ντοχή	M2 🗸 Θλιπτική Αντοχή fm	(N/mm2) 2	
Υπολογισμα dy dx	ός Αντοχής απο διαστάσεις dx (mm) dy (mm) dz (r 90 60 190 dz Μέση θλιπτή αντοχή fbc	nm) ð 0.8366i ? (N/mm2) 4		Nžo	ταχώρηση	
Ειδικό βά	ίρος ε (KN/m3)	Nέo		p it is the		
Θλιπτική	Αντοχή fb (N/mm2) 3.346666	Καταχώρηση		Εξοδος		

All fields are filled in automatically or by the user according to the detailed description the corresponding chapter of the program's user manual (see **§2. MODELING**).

Select and Exolog to return to the masonry library, where you will define a new wall using the new stonework, which now appears in the list of stonework options.

Μπατική α	οπτοπλιθοδομή-M2 25 cm	Ý	1920	Τύπος Υφιστά.	τενη
νομα	Μπατική οπτοπλιθοδομή	-M2 25 cm		Μανούας Πάχος (cm) 0 Μοι	όπλευρος
ύπος	Φέρουσα 🗸 🗸	Κοίλος τοίχος με πυρήνα 🛛 🗸 ?		Σκυρόδεμα Χάλι	ιβας
Λιθόσωμα Οπτόπλιθος κοινός 6χ9χ19			C20/25 V S50	0 1	
	Πάχος (cm) 9	fb=1.6733 fbc=2.0000 ε=15.00	1	Φ 8 / 10 cm fRdo,c(N	1Pa)= 0.00
loviaua	Τσιμεντοκονίαμα-Μ2		133	Αγκύρωση Χωρίς πρόσθετη μ	ιέριμνα
	΄ Γενικής εφαρμογής μ	ε μελέτη συνθέσεως fm=2.0000			
Αντηρίδεα	; ? L1 (cm) 0	t1 (cm) 0 t2 (cm) 0			
Σκαφοειά	δής τοίχος				
Συνολικά	ό πλάτος λωρίδων κονιάμ	ιατος g (cm) 0 ?	A STORE		
tef=9.0	00 k=0.45 fk=0.7944			Κατακόρυφοι Αρμοί πλήρεις	(&3.6.2)
	-		t1	 Οριζόντιος Αρμός πάχους >	15 mm
Λιθόσωμα	Οπτόπλιθος διάτρητα	ç 6χ9χ19 ∽	tt2	Πάχος (Τσοδύνσμο) (cm)	25
	Πάχος (cm) 9	fb=3.3467 fbc=4.0000 ɛ=15.00		Előnde Résses (Allum 2)	17.8
loviaµa	Τσιμεντοκονίαμα-Μ2	~	Sec.	0.70439	
	Γενικής εφαρμογής μ	ε μελέτη συνθέσεως fm=2.0000	Βιβλιοθήκη Λιθοσωμάτων	Μέτος Ελασικότοτας	0.75450
Αντηρίδεα	; ? L1 (cm) 0	t1 (cm) 0 t2 (cm) 0	Κονιαμάτων	(GPa)	0.79438
tef=9.0	00 k=0.45 fk=1.2905			Αρχική διατμητική Αντοχή fvk0 (N/mm2)	0.1
	μα πληρώσεως fck (N/m	1m2) Πάχος (cm)	Ni-	Μέγιστη διατμητική Αντοχή	0.1506
Σκυρόδε		7 Ε=30.00 ε=25.00	0341	Tvkmax (N/mm2)	
Σκυρόδε C20/25	~ 20		Kataymonan	καμπτική Αντοχή ΤΧΚ1	0.1
 Σκυρόδε C20/25 ηίπεδο Γν	20 /ŵơnc	Στάθυη Ποιοτικού	Non a Xaprion	(N/mm2)	1.050
Ι Σκυρόδε C20/25 ninεδο Γν	20 /ώσης ΕΓ1:Περιορια	μένη ~ Στάθμη Ποιοτικού ελέγχου 1 ~	Εξοδος	(N/mm2) Каµптікή А∨тохή fxk2 (N/mm2)	0.2

Name: Hollow wall with core (select from the list)

Infectosome: Optoplite common 6x9x19 (previously defined) and Thickness: 9 cm

A On the right, the values of fb and fbc strengths and the specific gravity of the selected lithobody are updated fb=1.6733 fbc=2.0000 ε=15.00

Conserve: Cement putty-M2

The type and compressive strength fm of the selected mortar is updated below.
 Γενικής εφαρμογής με μελέτη συνθέσεως fm=2.0000

For this example, all the wall details have been provided and it is sufficient to select to update the library and add it to the list of walls.

Πάχος (Ισοδύναμο) (cm)	25	In the lower right part of the window there is a summary table of the calculated values of the selected wall that is
Ειδικό Βάρος (KN/m3)	17.8	automatically filled in by the program. The user can
Θλιπτική Αντοχή fk (N/mm2)	0.794381	Intervene and change the values at will.
Μέτρο Ελαστικότητας 1000 (GPa)	0.794381	
Αρχική διατμητική Αντοχή fvk0 (N/mm2)	0.1	
Μἐγιστη διατμητική Αντοχή fvkmax (N/mm2)	0.1506	
Καμπτική Αντοχή fxk1 (N/mm2)	0.1	
Καμπτική Αντοχή fxk2 (N/mm2)	0.2	
Μέση Θλιπτική Αντοχή fm (N/mm2)	0	
Δεδομένα για Κριτήριο Αστοχίας Τάσεα Εφελκυστική Αντοχή fwt (N/mm2) 0	ον - Αποτίμηση Αντοχ	(ν/mm2) (ή σε ίση διαξονική Θλίψη (N/mm2) 0 (N/mm2) 0

At the bottom of the window you will find, , the <u>tensile strength fwt</u>, <u>the equivalent biaxial</u> <u>compressive strength</u> and the <u>mean compressive strength fm</u>.

OBSERVATIONS:

- A They relate to studies for the **assessment of** load-bearing masonry and the user has fill in the fields manually.
- For the Average Compressive Strength even when it remains 0, the program automatically calculates based on the compressive strength fk.

Η σχέση που συνδέει τη μέση θλιπτική αντοχή f_m με τη χαρακτηριστική θλιπτική αντοχή f_k , λαμβάνεται από τον ΚΑΝ.ΕΠΕ. (Παράρτημα 4.1 (§2.β) ή κεφάλαιο 7 (§7.4.1.ζ.2)) όπου εκεί χρησιμοποιείται για τις τοιχοπληρώσεις. Έτσι ισχύει ότι:

 $f_{m} = min(1.5 \cdot f_{k}, f_{k} + 0.50 (MPa)),$

(KAN.ΕΠΕ. - Παράρτημα 4.1 (§2.β))

όπου:

 f_m = μέση θλιπτική αντοχή,

fr = χαρακτηριστική θλιπτική αντοχή.

Στο Scada Pro η f_m μπορεί να δίνεται είτε ως τιμή από το χρήστη, είτε να υπολογίζεται αφού αυτός επιλέξει συνδυασμό <u>λιθοσώματος</u> και κονιάματος.

A The Equal Biaxial Compression Strength parameter is only necessary if the masonry is checked by **a stress criterion**.

The criterion incorporated in SCADA Pro is Karantoni et al (1993) which has the following form:

where $\square \ge 0$ indicates failure and $\square < 0$ indicates adequacy.

(See below **§Check of load-bearing masonry based on stress criterion**)

OBSERVATION:

Every time you enter a masonry in the library, it is permanently updated. Thus, in each subsequent study the library will include both the default masonry and those entered in previous projects.

2.3. Vector modelling :

2.3.1 Import dwg file and line recognition

For modelling load-bearing masonry structures with complex floor plans, SCADA Pro offers an intelligent way, combining the help of a drawing and the standard construction tool, allowing you to "build" your structure easily and quickly.

The procedure is as follows:

1. Import a floor plan from a .dxf or .dwg file

2. Select the Layers command of the dwg file to open the list of all design layers.

he list the layer to which the static walls of the project belong and press the "Convert Lines, Arcs" button.

▲ In this way, all the design entities belonging to the "TOIXOS" layer of the dwg file are converted into design entities of SCADA and thus are recognizable by the "*Face Recognition*" command which is explained in detail in the next chapter.

IMPORTANT NOTES

- **1** In case you do not have a .dxf or .dwg file you can draw the floor plan directly on the XZ plane of the desktop using the Drawing commands.
- 🔺 The dwg file you use as an auxiliary file is imported into the SCADA env.

level by identifying the beginning of the axes with the upper left point of the drawing

A The lines (lines and/or polylines) that define the static walls of the study, in order to be recognized as lines of SCADA, should belong to a separate layer, so that by using the command "Convert lines, arcs" the recognition is achieved.

2.3.2 Automatic Face Recognition

In the "Modeling" section select the command "Surface 3D">>"Face Recognition", and with

Right click and it opens the standard constructions box:

The program automatically recognizes the geometry of the floor plan. It suggests by default a height and creates the elevations in relation to the universal axes.

Property		Value	
Ξ	Γεωμετρία		^
	Αριθμός Οψεων	16	
	Κατά γ	1	
	Απόσταση γ	300.00	
	Πλάτος (cm)	30.00	
	Πάχος (cm)	50	
	Γωνία τοποθέτ	0.0	
Ξ	Αποστάσεις κα	τά γ	
	Ly1 (cm)	300.00	
	Οψεις		
	Σπάσιμο αντικει		

The user is asked to specify the number of floors and the individual heights, the thickness of the walls, as well as the openings for each face.

Pr	ope	rty		Value					
	Ly	1 (c	m)	300.00	^				
-	Oy	pel	S						
	Σп	άσι	μο αντικει						
		Oų	μη 1						
		Αρ	xý x (cm)	1142.12					
		Αρ	xý y (cm)	108.44					
		Mŕ	јкоς(cm)	540.92					
		Гω	νία	181.29					
		Yų	ιος(cm)	0.0					
		Пλ	άτος (cm)	30.00					
		Πá	xoς (cm)	50.00					
		Av	οιγμα	1					
			Ανοιγμα 1						
			Αρχή x (c	200.00					
			Αρχή y (c	0.0					
			Πλάτος(100.00					
			Yψoς(cm)	220.00					
		Oų	μη 2						
		Aρ	xý x (cm)	95.15					
		Aρ	xý y (cm)	132.03					
		Mŕ	кос(ст)	506.32	~				

After completing the process for each face and each opening, insert the vector into the desktop by selecting the OK button.

A You can register the configured vector as a .stp file by selecting the Register button, creating your own library of standard constructs. With the Open command you can call a registered frame at any time.

ATTENTION: Make sure that the wall thickness you set in the library has the same value as the thickness of the walls you set in the standard constructions.

NOTE: Within the field of standard constructions you can define only one thickness for all walls and in case there are walls with different thicknesses in the design, the modification will be done later within the grid field.

After completing the process for each face and each opening, insert the vector into the desktop by selecting the OK button.

Within the Scada environment, the contours of the facades with the openings are displayed in 3D.

ATTENTION Once you select OK and the institution has been entered in the

SCADA Pro desktop, you cannot return to the original dialog box with the Standard Constructions.

The auxiliary file is deleted via the command

inpuenie.	Wingpour bracht manifest Trant
and his	to papa
=Q ax	1992#1

2.4. Definition of mesh groups

After importing the vector into the Scada interface, open the "Modelling" section and select the " 3D Mesh " command.

In the dialog box that opens, in the list "Grid Group Descriptions" the grid 1 PLATE with the corresponding subgroups (one for each face) has been automatically created. By selecting 1 PLATE the fields Density, Width, Thickness (as defined previously in the parameters of the standard constructions) are automatically filled in.

Τεριγραφή	PLATE			Υλικό	Τοιχοι	noila	~	Ποιότητα	Μπατική οπτοτ	×
Στοιχ	cio		Ks (Mpa/cm)	Ioo	гропіко́	C) Орθотр	οπικό	Μπατική οπτοπ/ Υπεριμηστική οπ	(θοδομή-M2 25 cm «ληλιθοδομή-M5 30 c
Plate		~	300	Exx (GPa)	0.794	381705	Gxy (GPa)	Τοίχος ΥΤΟΝG-Ι Λιθοδομή-Μ2 50	M5 25 cm) cm
1υκνότητα Πλάτος (cm 0.05 ~ 30		ος (cm)	25	Eyy (GPa)	0.794	381709	ε (kN/m3)	Λιθοδομή-M2 60 Λιθοδομή-M2 70) cm) cm
Περιγροφές Ε		Env	φάν.Πλέγματος	Ezz (G	SPa)	0		atx*10-5	Τσιμεντολιθοδο Τσιμεντολιθοδο Δίθωσε Τσίκος Σ	μή-M2 25 cm μή-M2 40 cm Σιανο 60 cm
Ομάδων Πλι	εγμάτων		πεδότητα 1/1/2	vxy(0	. 1-0.3)	0		aty*10-5	Λιθοδομή Σιαφ	- Néo
		2P S 3P S	1/2/2	vxz(0	. 1-0. 3)	0		atxy*10-5	1	
		4PS 5PS	1/4/2 1/5/2	vyz(0	. 1-0. 3)	0.2		Exx * v	xz = Eyy * vxy	
		6P S	1/6/2 1/7/2	Ev	ກມຣ໌ດເທດ		Χάλυβας	Οπλισμού		1
		8P S	1/8/2		(popuor		S220	~	ОК	
		9P 5	1/9/2 51/10/2	Δ	ιαγραφή		Επικάλυς	μη	Εξοδος	
		11P S	51/11/2 🗸		Νέο		20	mm	2,000,	

In Quality select from the list the wall previously defined in Masonry Library and the corresponding fields Exx, Gxy and the specific weight e are automatically updated.

§ Clarification of the positive and negative side of the surface element

The figure below explains schematically what is considered in SCADA Pro positive and negative side of the surface element with the help of the right hand rule.

2.4.1 Definition of mesh subgroups

The operator coming from the standard constructions brings, together with the contours of the faces, the mesh group (1 PLATE) with one subgroup for each face.

In the symbolism of the subgroup :

- The first number is the number of the face, -
- the letter P denotes the flatness and
- the number in brackets, the number of holes (openings) of the specific face.

By activating Eπιφάν.Πλέγματος and selecting a subgroup, the dialog box is populated with the parameters of the selected view,

Δημιουργία Ο	θμάδων Πλε	γμάτων					2		Х
Περιγραφή	S1/10/2			Υλικό	Τοιχοπ	oiia	~	Ποιότητα	Мпатікή оптог 🗸
Στοιχα	εio	Ks (Mpa/cm)		Ο Ισοτρ	опко	C	Ορθοτρ	опко	Γωνία Ο
Plate	~	300							
Πυκνότητα	Πλάτος (α	m) Πάχος (cr	m)	Exx (GP	Pa)	0.79	4381709	Gxy (GPa)	0.317752683
0.05 ~	30	25		Eyy (GP	Pa)	0.79	4381709	ε (kN/m3)	15
Περιγρα	ς	Ezz (GP	a)	0		atx*10-5	1		
Ομάδων Πλε	Ομάδων Πλεγμάτων Επιπεδότητα			vxy(0.1	1-0.3)	0		aty*10-5	1
1 120	2	P S1/2/2 P S1/2/2 P S1/3/2		vxz(0.1	L-0.3)	0		atxy*10-5	1
	4	P S1/4/2 P S1/5/2		vyz(0.1	L-0.3)	0		Exx * v	xz = Eyy * vxy
	6	P S1/6/2 P S1/7/2		Evŋ	μέρωση		Χάλυβας	; Οπλισμού	
	Περιγραφή S1/10/2 Υλικό Τοιχοποιία Ποιότητα Μι Στοιχείο Ks (Mpa/cm) Ουστροπικό Ορθοτροπικό Ορθοτροπικό Γαυχοτοποία Ποιότητα Μι Πιακνότητα Πλάτος (cm) Πόχος (cm) Ο.794381705 Gxy (GPa) Exx (GPa) Ο.794381705 ε (kN/m3) Ezz (GPa) Ο Δτατροπικό Ο Ο Ο Ο Ο ΤΡΙΑΤΕ ΠΕριγραφές Επιπεδότητα Π PLATE Π PS 1/1/2 Δ Δ	OK							
	10	P S1/9/2		Δια	γραφή		Επικάλυι	ψη	FCoSoc
	11	IP S1/11/2	~	1	Nżo		20	mm	Εςυυυς

allowing you to modify them, give them another name, change the thickness, or even choose from

the library a different wall for that particular face. Finally, press the Evaluation button to register the modifications.

- If a surface is flat you need to activate the checkbox
 Επιπεδότητα
- It is recommended not to define very small surfaces.
- When there are consecutive surfaces it is good not to have big differences
- in the dimension of the surface element between these successive surfaces.
- The ratio of surface element thickness/width of surface element not be disproportionate

📁 NEW

In the new version of SCADA Pro, we added the Mesh Consolidation, offering multiple new features, such as the ability to import a 2nd dwg (**see User Manual Modeling - § Mesh Consolidation**) The procedure to follow when <u>you have two or more floor contours from different dwg</u> is as follows:

- Import the first dwg,
- *you do, as you know, a face recognition and create the ground floor.*
- Then you bring in the second dwg,
- *you identify faces and "glue" the first floor on top of the ground floor.*

You now have two main groups and lines that are identified and/or need to be broken. Same process for as many floors as I have.

Finally, using the "Consolidate" command, you select all the main groups that have been created and create a new one that includes all the subgroups with their outlines now as they should be.

If you want, you can now erase the original groups and their outline lines.

2.4.2 Plate modelling with definition of new sub-grids

To model the roof slabs of the building, activate the 2D view and with the help of , display the floor plan.

In the Modeling section, select the command "3D External Boundary, with the left mouse button point successively to all the contour lines of each plate and finish with a right click.

Repeat the same process for all 4 plates:

	Εισαγωγή Επι	paveiac 🔜
	Пермоар) 517 Етоною Рама Ф	Ks (Mpa/cm) 300
	Τθιάτος (cm) Πάκος (cm) 30 [20	🕑 Enereðórijna
*	OK	Cancel
* *		
ž – – – – – – – – – – – – – – – – – – –		

Tepypopt	S18	1	Περιγραφή	\$19		Tlepsypapt	820	
Itu	pucio	Ka (Mpa/cni)	Ito	acio	Ks (Mpa/cm)	Itus	acia	Ka (Mpa/cr/)
Plate	*	308	Plate	v	300	Plate	×	300
FUNITOS (cm	i) Fickauc (em)		(Τλάτος (επ) Nixoç (cm)	and the second	Γθνάτος (cm)	Nawç (cm)	
30	20	Επιπεδότητα	30	20	Επιπεδότητα	30	20	Επιπεδότητα

The window entitled "Insert Surface" appears on the surface, where you set the parameters of the grid of each plate:

-set, Width and	Thickne	ess (30, 20)					
-press the OK b	utton.						
		Con Distance					
Returning to	at	and weeking	you are viewing	that	at	subgroups	the

group plate

including "S17-20" grids.

Δημιουργία Ομάδων Πλεγμ	ιάτων				×
Περιγραφή S17		Υλικό Σκυρό	ινς δεμα	ς 	C20/25 ~
Στοιχείο	Ks (Mpa/cm)	🖲 Ισοτροπικό	$\bigcirc o$	ρθοτροπικό	Γωνία Ο
Plate ν Πυκνότητα Πλάτος (cm)	300) Πάχος (cm)	Exx (GPa)	30	Gxy (GPa)	12.5
0.05 ~ 30	20	Eyy (GPa)	30	ε (kN/m3)	25
Περιγραφές 🗹 Εr	ιφάν.Πλέγματος	Ezz (GPa)	30	atx*10-5	1
Ομάδων Πλεγμάτων	ιιπεδότητα \$1/7/2	vxy(0.1-0.3)	0.2	aty*10-5	1
8P 9P	S1/8/2 S1/8/2 S1/9/2	vxz(0.1-0.3)	0.2	atxy*10-5	1
10P	S1/10/2 S1/11/2	vyz(0.1-0.3)	0.2	Exx * v	/xz = Eyy * vxy
12P 13P 14P	S1/12/2 S1/13/2 S1/14/2	Ενημέρωστ	N Xả	λυβας Οπλισμού 20	ОК
15P 16P	S1/15/2 S1/16/2	Διαγραφή	En	ικάλυψη	FF - S
17P	S17 ¥	Nέo	20) mm	Εςούος

Activate Eπιφάν.Πλέγματος, select one of the sub-grids, set the material to Concrete, as well as Reinforcing Steel and Coating, and press.

CAUTION When there are common boundaries in the grid you must create a subgrid on the same grid. That is, when there are surfaces with common boundaries they should be sub-surfaces of the same mesh.

2.5 Grid calculation

Πλέγμα	Υπολο	νυσικός Οικάδ	ων Πλευράτων	×
Εξωτερικό όριο	1 PLATE	*	Υπολογισμός	
	Αριθμός Ορατά Χ	κρώμα ο 🔨	Αλλαγή Φοράς Αυτο	
οπές	1 51/1/3 2	36 X	X Y Z FFAMMH	
e a.	3 51/3/3 0	36 X	Αρχή Τέλος	
Σουείο	4 51/4/2(2)	36 X	X C C	
Πμαιο	5 51/5/2 🖸	36 X	Y O O	
	6 51/6/2 0	36 X		
Επεξεργασία	7 51/7/2	36 X	4 U U	
1000-000	0 52/8/2	30 X	Envloyit ölyev	
	10 51/10/3 0	30 A		
Υπολογισμός	11 51/11/3 13	36 X	Ορστο Μη αρστο	
	12 51/12/2 0	36 X	Ακορωσή - Διαγραφή	
	13 51/13/2 0	36 X	Τρύπος Γραμμος	
	14 51/14/ 🗯	36 X 🗸	Σημείο Ιδιότητες	
	10.0		Πλέγματος Μαθηματικού	

2.6 Mathematical model calculation

To create the mathematical model of the vector, from the "Tools" section select the command "Calculate" and press the OK button in the dialog box that opens:

Μαθηματικό Μοντέλο
Επιλογή Κανονισμού (Αδρανειακά)
EC2 V
Μετατροπή κανονισμού
Υπολογισμός Ο Αδρανειακά Ο Ενημέρωση
Υπολογισμός Αδρανειακών - Μεπιφανειών με την μέθοδο των συνοριακών στοιχείων
OK Cancel

After creating the mathematical model of the vector, it is necessary to redefine both the local axes of the facets and their directions with respect the universal ones.

Through the Εμφάνιση Module activate the local axes in

🔽 Τοπικοί Αξονες

Go back to the "3D Mesh>> Calculate" command and in the dialog box , select the meshes with the

<u>Eπιλογή όλων</u> command and press the Auto button which <u>redefines the local axes so that all</u> elements of the same facet have same direction.

- Finally, define the direction of each subgrid with respect to the universal axes. To locate the surfaces you can use Select All and Not Visible to erase all surfaces and then select them one by one by pressing Visible and set the directions X or Z respectively.
 - On aspects parallel to X, leave X
 - On the faces that are parallel to Z, press the Z button
 - In all other views the direction is automatically determined by the program.

In the example it follows:

Finally, for this particular example, and since we want to consider it embedded in its base, via the

command many and the option with window select all the nodes of the foundation level and embed them.

	anatini					
	Tare Rigt The	c MAlacc officers Michail A	n' liarowij	Admine pathon Explored Explored	Electroni Imponi No facture;	ieç Malalie proceda Köyfer
				Nutive	Garriges	
	🖸 14	Tierum;		1		43L95
	图制	Deenuchy	~	8.)	18	416.00
	E III	minuter;	-	ŧ	1	15.90
	2h	Throad (8		idented .
	回用	Nerver	-	1		kNevhad
1	12 ft	Nicoural I	40	1		kNer-ted
	1.14	Ang Montor	EL	with they	8	
1	1222		Б	a vasta se suas	autemation	
	1	Reutispiq		Machulan	-	
						Apply
					1	1111222
	_				BR	140

2.7 Interlayer Masonry

In case the masonry we are studying includes horizontal or even vertical chenages, then these should be modelled.

The modelling of the concrete elements that make up the friezes is done by defining and inserting members:

Horizontal foyer:

ιέλος					N			×		
0	Túnoc	B-3d	~	A(m^2)	0.05	Asz(m^2)	0.041666	6		
0	j	0	Ĩ	Ak(m^2)	0.05	beta	0			
Σκυρόδε	τμα		~	Ix(dm^4)	3.421288	E(GPa)	30			
C20/25			~	Iy(dm^4)	2,6041666	G(GPa)	12.5			
Διστομής				Iz(dm^4)	1,6666666	ε <mark>(kN/m^3)</mark>	25			
~	И Док	ώς (0)			<u>-</u>		-			
25/20		Διστομή		Γεωμετ	rpia (cm)	+ bw-	-+	Ka	παχώρ	νηση
ς Δοκού Μ	1εγάλη	260000	a	bw	25	1			Επλογ	ή
16		Ίοιότητα	20.5	h	20		÷		Info	
fsets (cm)		C20/25		~				0	90	3D
νρχηι								180	270	View
			Jac Barris	-			Y		m	
s		1	1 stores		Offsets					
			100			Z				
				O-						
		-		Ave	στραμμένο					
	14	σθηματικό	Μοντέλ	0	~			0	к	Cance
	είλος 0 Σκυρόδε C20/25 Διατομής 25/20 ς Δοκού Ν sets (cm) ρχή i		μέλος 0 Τύπος Β-3d 0 j 0 Σκυρόδεμα C20/25 Διατομής 25/20 Δοκός (0) 25/20 Δοκός (0) Διατομή Υλικό Γοώτητα C20/25 Μαθηματικά	μέλος 0 Τύπος Β-3d ✓ 0 j 0 Σκυρόδεμα ✓ C20/25 ✓ Διατομής Δωκός (0) 25/20 Δωκός (0) 25/20 Δωκός (0) 25/20 Δωκός (0) Δωτομή Υλικό Σκυρόδεμα Ποώτητα C20/25 ✓ Μαθηματικό Μοντέλ	0 Τύπος B-3d A(m^2) 0 j 0 Ak(m^2) Σκυρόδεμα Ix(dm^4) C20/25 Iy(dm^4) Διατομής Iz(dm^4) 25/20 Διατομή ζ Δοκού Μεγάλη Γεωμε Ναθηματικό Μοντελο Μοθηματικό Μοντελο	Δ	0 Τύπος B-3d A(m^2) 0.05 Asz(m^2) 0 j 0 Ak(m^2) 0.05 beta Σκυρόδεμα Ix(dm^4) 3.421288 E(GPa) C20/25 Iy(dm^4) 2.6041666 G(GPa) Διατομής Iz(dm^4) 1.6666666 ε(kN/m^3) Δοκος (0) Δοκος (0) Σεωρόδεμα h 20 25/20 Δοκος (0) Σεωρόδεμα h 20 ζ Δοκού Μεγάλη Σεωρόδεμα h 20 ωσυμή γλικά Σεωρόσεμα h 20 ωσυμή γωταμή Γεωμετρία (cm) μ μ μ Διατομή Γεωμετρία (cm) μ μ μ γλικά Σεωρόσεμα h 20 μ μ Γωνία Γωνία Γωνία μ μ μ Μοθημασικό Μοντέλο Μοθημασικό Μοντέλο μ μ μ	0 Τύπος B-3d A(m^2) 0.05 Asz(m^2) 0.041666 0 j 0 Ak(m^2) 0.05 beta 0 Σκυρόδεμα Ix(dm^4) 3.421288 E(GPa) 30 C20/25 Iy(dm^4) 2.6041666 G(GPa) 12.5 Διατομής Iz(dm^4) 1.6666666 ε(kN/m^3) 25 Διατομής Iz(dm^4) 1.6666666 ε(kN/m^3) 25 Δοκού Μεγάλη Σεωρόδεμα h 20 1 γ Δοκού Μεγάλη Γεωμετρία (cm) μ 1 γ Δοκού Κος (0) Σειμοδόεμα h 20 1 γ Ποάτητα Γεωμετρία (cm) μ 1 1 γ Ν 20 Γεωμετρία (cm) μ 1 1 γ Ν 20 Γεωμετρία (cm) μ 1 1 1 γ Ν 20 Γεωμετρία (cm) Γεωμα 1 1 1 μ Ποάτητα Γεωμα Γ Γ 1 1 1 1 </td <td>μέλος × 0 Túnoç B-3d A(m^2) 0.05 Asz(m^2) 0.0416666 0 j 0 Ak(m^2) 0.05 beta 0 Σκυρόδεμα × Ix(dm^4) 3.421288 E(GPa) 30 Σκυρόδεμα Ix(dm^4) 2.6041666 G(GPa) 12.5 Δατομής Iz(dm^4) 1.66666666 ε(kN/m^3) 25 Δωτομής Δοκός (0) 25 Ν Ν 25 ζωατομή Σουρόδεμα Ν 25 Ν Ν 180 γ/λος Ν 25 Ν Ν Ν 180 γ/λος Ν Ν Ν Ν Ν 180 γ/λος Ν<td>Δ</td></td>	μέλος × 0 Túnoç B-3d A(m^2) 0.05 Asz(m^2) 0.0416666 0 j 0 Ak(m^2) 0.05 beta 0 Σκυρόδεμα × Ix(dm^4) 3.421288 E(GPa) 30 Σκυρόδεμα Ix(dm^4) 2.6041666 G(GPa) 12.5 Δατομής Iz(dm^4) 1.66666666 ε(kN/m^3) 25 Δωτομής Δοκός (0) 25 Ν Ν 25 ζωατομή Σουρόδεμα Ν 25 Ν Ν 180 γ/λος Ν 25 Ν Ν Ν 180 γ/λος Ν Ν Ν Ν Ν 180 γ/λος Ν <td>Δ</td>	Δ

The insertion of the member can be done from node to surface node, so as ensure that the linear member is connected to all nodes of the surface node:

Or for greater convenience, from the initial to the final node of the wall:

In this case, however, in step 2°, the member must be broken in order connect to all nodes of the surface.

This is done by using the Surface Rod Union (Member) command and left-clicking on the member:

Similarly for the Vertical Folds:

Vertical frieze:

3. IMPORTATION OF GOODS

3.1 Manual load insertion

Through the "Loads" Module and the "Member Loads" command group by selecting the "Insert" command, it is possible to insert loads on the surface or on the nodes.

In this example, in order to assign the loads to the plate that houses the carrier, you follow the following procedure:

With window 🔛 select all nodes in	the upper level	-
	filogywyr) goptlwy	
bograat, Kirinis Ougaala Tene, Paala w Romood Teng bol Paala m Romood Teng bo	Kennis Supple Elling Flean v 2 Turi prove 0 0 Annor prove 0 0 1 Turing prove 0 0 1 Turing prove 0 0 1 Turing prove 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grap 1 v
	n):supt	Exception Kellisope Relice Environment OK 2 Center

3. Press the right mouse button and in the dialog box, Select: Permanent

Plate, Pressure,
Enter: 1.5 KN/M2 Press: Insert
then
Select: Mobile - Node, Powers, Type: 2 KN/M2
Push: Import
Press: OK to enter the loads on the nodes

3.2 Automatic load distribution

The new version SCADA Pro includes a new tool for automatic load distribution and performance on surfaces simulated with finite surface elements.

👹 Κατανομή Φορτίου σε Επιφάνεια

A detailed description of the use of this command can be found in the corresponding chapter of the User Manual of the program, specifically in chapter 7. P. 38.

4. ANALYSIS

4.1 Execution of analysis of a load-bearing masonry structure according to the Eurocode

Once the process of modeling the structure and entering the loads is complete, proceed to Analysis. For the analysis of load-bearing masonry structures, SCADA Pro incorporates the parameters of the Eurocode. It is therefore required to create a Eurocode-based analysis scenario to perform the analysis.

1.	EC-8_Greek Static (0)		- E.	
Νέο	-	Ενεργό Σενάριο	E	κτέλεσε

Go to the "Analysis" section and from the "Scenarios" command group, select the "New" command to create a Eurocode scenario for the analysis of the load-bearing masonry structure.

Select the "New" command and in the dialog box: -choose Node Recount with the Cuthill-McKee(II) method -choose from the predefined ones or create a new script by selecting EC-8_Greek Dynamic

Scenario			×	
Επαναρίθμηση Κόμβων Cuthill-McKee(II)	~	Advanced Multi-Threa	aded Solver	
🗌 Ακύρωση	Ονομα			
EC-8_Greek Static (0) EC-8_Greek Dynamic (1)	Ανάλυση	EC-8_Greek ~		
	Τύπος Ιδιότητες	Dynamic	~	
	Μέλη		Κόμβοι	
	Φορτία	τεις	Μάζες	
	Νέο		Ενημέρωση	
	Εκτέλεση ολων των αναλύσεων			
	Εξοδος			

EC-8 Greek Dynamic (1)	
co-o_oreck bynamic (i)	
EC-8_Greek Static (0)	
EC-8_Greek Dynamic (1)	
	1

-choose the Eurocode scenario from the list and then the command . EKTERE

In the dialog box that opens, after accepting the warning about no aperture, press in turn:
ΠΡΟΣΟΧΗ!!!	×
Η ανάλυση που χρησιμοποιείτε δεν ειναι συμβατή (Απουσία κόμβων διαφράγματος). Συνέχεια ;;;	
Yes No	

2	Παράμετροι	Κέντρα Μάζας	; (cm)			~
3	Αυτόματη Διαδικασία	Level	Х	Y	Z	^
Διαόι	κασία	0 - 0.00	0.00	0.00	0.00	
	Μάζες-Ακαμψίες	1 - 300.00	0.00	300.00	0.00	
	Κανονικότητα					
	Κανονικό					
	✓ Σε κατοφή ✓ Καθ΄υψος					
	Ισοδύναμη				_	
	Ανάλυση					~

Ενημέρωση Δεδομένων to update the parameters of the active scenario.

In the dialog box that opens, it informs you of the absence of a baffle node. You can accept the lack of aperture (worse results) or specify an aperture node.

1

to set the parameters of the analysis

Παράμετροι EC8		×						
Σεισμική Περιοχή Σεισμικές Περιοχές Ζώνη ΙΙΙ ν a 0.36 *g Σπουδαιότητα Ζώνη ΙΙ ν γi 1	Χαρακτηριστικές Περίοδοι Τύπος Φάσματος Ορίζόντιο Κατακόρ. Τύπος 1 S,avg 1.2 0.9 Εδαφος TB(S) 0.15 0.05 Β TC(S) 0.5 0.15 TD(S) 2.5 1	Επίπεδα ΧΖ εφαρμογής της σεισμικής δύναμης Κάτω 0 - 0.00 Ανω 1 - 300.00 Δυναμική Ανάλυση Ιδιοτημές 10 Ακρίβεια 0.001 CQC Συντελεστές Συμμετοχής Φάσματος Απόκρισης PFx 0 PFy 0 PFz 0						
Φάσμα Φάσμα Απόκρισης Σχεδιασμ ζ(%) 5 Οριζ Φάσμα Απόκρισης Ενη Είδος Κατασκευής q Διαζωματική Τοιχς q Σχυρόδεμα Σιδηρά χ Σύμικτο Αοπλη Τοιχοποία Οπλισμένη Τοιχοποία	ιού ✓ Κλάση Πλαστιμότητος DCM ✓ ιόνπο b0 2.5 Κατακόρυφο b0 3 μέρωση Φάσματος Sd(T) >= 0.2 a*g Δ 1.5 qy 1.5 qz 1.5 ου a Z Πλαισιακοί Φορείς τύπου a 3	Εκκεντρότητες Sd (T) e τιχ 0.05 e τιχ 0.05 e τιz 0.05 *Lx Sd (TX) e τιz 0.05 *Lz Sd (TY) Sd (TZ) 1 Ανοίγματα Εσοχές X ενα Z ενα Z ολες οι άλλες περιπτώσεις Z Ολες οι άλλες περιπτώσεις						
 Χ Δύσκαμπτα χωρικά πλαίσια Οριο Σχετικής Μετακίνησης ορό Είδος Κατανομής 	Χαμηλής Σεισμ. Τοιχοποία Καμηλής Σεισμ. Τοιχοποία Χ Δύσκαμπτα χωρικά πλαίσια από Σκυρόδεμα Οριο Σχετικής Μετακίνησης ορόφου 0.005 Τοιχεία KANEΠE Default OK Cancel Είδος Κατανομής Τριγωνική							

-Here are "Zone", "Importance" and "Terrain".

-select the "Design" Spectrum and press Update Spectrum

-in the Construction Type select from the list "Interlocking Masonry" (for automatic calculation of q)

- The possibility of 2 seismic force distributions:

Είδος Κατανομής	Τριγωνική	~
	Ορθογωνική	
	Τριγωνική	

Rectangular Triangular Choose

the Rectangular

-Press the OK button to update the parameters and close the window.

3 Αυτόματη Διαδικασία

to run the analysis.

Let the program complete the process and press the Exit button.

	Порбцятра	Κάντρα Μάζρ	c (ca)			3
	Autopath Indonasia	Level	x	Y	Z	1.
laciero	aafa	0-0.00	0.00	0.00	0.00	
•	Modec-Ascentist;	1-300.00	673.66	300.00	844.52	
1	Κανονικότητα				1000000	
	Kavovská Dis sátrovat) Zikati uvyac					
ſ	Τσοδώνομη		-			
1	Ανάλυση		1			

EC-8_Greek Dynamic (2)

Ενεργό Σενάριο active, select the command "Combinations" and the With the scenario coefficients of the dynamics are automatically filled in according to the Eurocode.

÷

υνδυασμ	μοί Σετ Φ	ορτίσεων															>
γG	1.35	γE	1	YGE	1		ψ2	0.3		Αστοχία ΣγG	ις +γ(Q+Σγψ0Q	Λειτουργικότητ ΣG+Q+Σψ0	ας Q		Υπολογια	τμός
YQ 1	1.5	γE0.3	0.3					Ανεμος - Χιον	I.	✓ 2G+	Ψ1	Q+2ψ2Q Σγψ2Q	✓ 2G+Ψ1Q+2 ✓ ΣG+Σψ2Q	ψ2Q	L	μαγραφή	Ολων
		Είδος		Διεύθυνσι	ı	LC1		LC2	LC3			LC4	LC5		LC6		LC ^
Σενάρια	o					EC-8_Gree	<u>1</u>	EC-8_Gree 💌	EC-8	Gree	-	EC-8_Gree	EC-8_Gree	-	EC-8_G	ree 💌	EC
Φόρτισ	ση					1		2	3			4	5		6		5
Τύπος						G	EC	-8_Greek Dynamie	: (1)	1	•	EzD 💆	Erx	-	Erz	-	Eyí
Δράσει	ις						-	Κατηγορία 💌		1	•	-		-		-	
Περιγρ	αφή																
											+						<u> </u>
Συνδ.:1	1	Αστοχίαα	. <u> </u>	Οχι	-	1.35		1.50									-
Συνδ.:2	2	Αστοχίαα	ç 💌	Οχι	-	1.00		0.50									-
Συνδ.:3	3	Αστοχίαα	ç 💌	Κατά +Χ	•	1.00		0.30	1.00			0.30	1.00		0.30		0.3
Συνδ.:4	4	Αστοχίαα	ç 💌	Κατά +Χ	•	1.00		0.30	1.00			0.30	1.00		0.30		-0.
Συνδ.:5	5	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			0.30	1.00		-0.30		0.3
Συνδ.:6	5	Αστοχίαα	ς 💌	Κατά +Χ	•	1.00		0.30	1.00			0.30	1.00		-0.30		-0.
Συνδ.:7	7	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			0.30	-1.00		0.30		0.3
Συνδ.:8	3	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			0.30	-1.00		0.30		-0.
Συνδ.:9)	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			0.30	-1.00		-0.30		0.3
Συνδ.:1	10	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			0.30	-1.00		-0.30		-0.
Συνδ.:1	11	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			-0.30	1.00		-0.30		0.3
Συνδ.:1	12	Αστοχίαα	ς 💌	Κατά +Χ	-	1.00		0.30	1.00			-0.30	1.00		-0.30		-0. 🗸
<								i					1				>
Doorf	òra	Amaiosan			váßam	Kara	when	TYT	Ree	callocum uit		Συνδυσσιοί			OK	6	ncel
npood	ului I	Administration		2	anhaot		(wpr)or		про	τουοριομε	VOI.	2000000000			UN	Ca	icei

The coefficient file is automatically entered in the study folder, to be called up in the "Results" and "Sizing" sections.

1 In case of carriers made of load-bearing masonry due to the large number of finite surface elements consists of activate to the option Scenario \times Επαναρίθμηση Advanced Multi-Threaded Solver Kόμβων Cuthill-McKee(II) \sim with the help of which the analysis is performed more

quickly. To do this go to Analysis->

Advanced Multi-Threaded Solver

N.

and check the checkbox

5. RESULTS

5.1 Appearance of carrier deformations with surface elements

Go to the "Results" section to check the deformations of the vector. Select the command select the combinations of the analysis

C

Συνδυασμοί	×
Φορτίσεις Συνδυασμοί	
	~
EC-8_Greek Dynamic (2).cmb	
Υπολογισμός	
ОК	Cancel

Choose to view the deformed vector either by combination or by eigenmode.

5.2 Checking load-bearing masonry based on stress criterion

In load-bearing masonry structures it is often useful to check the adequacy in terms of stresses. This check is performed on structures with walls of any shape (curved or flat) and applies to both existing and new masonry.

The criterion that has been incorporated into SCADA Pro is Karantoni et al (1993) which has the following form:

where $\square \ge 0$ indicates failure and $\square < 0$ indicates adequacy.

5.2.1 Set Material Parameters

The Karantoni et al (1993) criterion, in addition to the parameters related to the simulation, requires the definition of the following material strengths:

- Compressive strength (fw)
- Tensile strength (fwt)
- Equal biaxial compression strength (fwcb)

These strengths are defined in the masonry library for the materials used.

	yoc 50cm					Contraction of the local division of the loc	Τύπος Υφιστά	ADVID.
Vojua /	Λθινος Τοίχος 50	lom.					Mayóúac Dávac (cm) 0 May	halmon .
únoc e	Npouro	~ 4	μπλάς τοίχος	8	~ 7		Σκυρόδομα Χάλι	βος
-	100-10012						C20/25 ~ \$50	0
Λθόσιμο	Φυσκός Λαξει	πός λίθος	20x20x50		۳J	_	@ 8 / 10 cm fRde,c)	(Pa)=
	Πάχος (ση)	25	fb=5.700	0 fbc=8.000	00 c=26.00	-	Αγκώρωση Χωρίς πρόσθεπη	י מיעומאנ
Covicus	Тацечтокоую	µ0-M5			~	Sumal Street	L Martin	
Avmpforc	7 11 fa	ovincueue n) 0	ti (cn)	otoc fine5.0	000 t2 (cm) 0			
	in the second	10 14	1		14 000 X			
Συναλικό	ης τοιχος πλάτος λωρίδων	κονιάματα	ac g (cm)		0			
-					100			_
1						and the second second	Κατοκόρυφοι Αρμοί πλήριος	(83.6.2)
interior.	Burnelse Auffen	mic NBoc	20+20+50			t1	Οριζοντιος Αρμος ποχους >	-15 mm
Vielogiting	and a second	25	augustas		0	PR 12 -	Πάχος (Ισοδύνομα) (cm)	50
	Plenung (em)							
	Nàxoc (cm)		_ m=5.700	0 mc=0.000	N 1. M20,00		Edixó Bápo; (/04/m3)	26
Coviqua	Πάχος (cm) Ταμεντοκονία	uo-M5	m=5.700	0 100 40.000	v = -20.00	BG/v09/wm	Edixol Bápoc (VH(InS) Bilumiol; Avroyol & (N/Iner2)	26
loviqua Ivmpiõeç	Πάχος (cm) Τσμεντοκονία Γενισής εφαρμ 2 L1 (σ	μα-M5 ογής με με η) ο	ském auvěda ti (cei)	0 mc=0.000 πως fm=5.0	000 12 (m) 0	Βιβλιοθήκη Νθοσωμάτων Κανιομάτων	Εδικό Βόρος (Φλ(m3)) Βλιπτική Αντοχή fk (Φλ/mm2) Μέτρο Ελαστικότητος (ΟΡκ)	26 2.45612 2.46612
Coviqua Avmpiões	Πάχος (στι) Τσμεντοκονία Γενικής εφαρμ 2 L1 (σ	μο-M5 ογής με με η) [0	 eAitmy aux/865 t1 (cm)	0 mc = 4.000	000 000 12 (cm) 0	Βιβλαθήκη Αθοαφάτων Κάνκομάτων	Бійної Біброс (ИЧ/In1) Вілітної; Аνтоуґі В. (И/Intel2) Мігро Еλαστικόπτος (GPA) Арукої балµтнигі Аνтоуґі Киб	26 2.46612 2.46612 0.1
Koviqua Avmpičec Deupóčicu	Πάγος (στι) Τσμεντοκονία Γενικής εφαρμ 2 L1 (σ α πληρώσεως _Φ	ыо-M5 оуńс ис ис n) [0 k (Nymm2	chém, auvilée] ti (an)) Néyes; (an	0 Hac+4.000	000 12 (m) 0	Βιβλιοθήκη Αθοσωμάτων Καινομάτων	Edixid Böpoç (904/in 3) Edixmadi Avroyn fik (94/ims2) Métrop Elkaomkámmor, 1000 (GPki) Acquert Biorgument Avroyn field (94/ims2) Métyarm Biorgument Avroyn futuras (94/ims2)	26 2,45612 0.2.46612 0.1 0.2565
Koviqua Avmpiõeç Deupéõqu C20/25	Πάχος (cm) Τσιμεντοκονία Γενικής εφαρμ 2 L1 (σ α sληρώσεως g	μα-M5 ογής με με π) [0 % (%/mm2 10	10=5.700 t1 (cm) 100;coc (cm 0	0 hic+s.00	000 12 (m) 0	Βιβλιοθήκη Νέσουμάτων Κάντομάτων Κάντομάτων	Εδίκιδ Βόρος (904/m3) Θλιπτική Αντοχή fk (94/mm2) Μέτρο Ελοστικότητος 1000 (GPa) Αρχική διατμητική Αντοχή Γκίοι (94/mm2) Μέγκητη διατμητική Αντοχή Γλάπακ (94/mm2) Νέχωπτος Αντοχή Γλάπακ (94/mm2) Καρμπτρή Αντοχή Γλάπακ (94/mm2)	26 2.4561 0.2.4661 0.1 0.2565 0.1

The values suggested by the authors can be used as an indication:

0.085,	1.65

In addition, depending on the type of masonry (New or Existing), the appropriate safety factors ($_{YM}$ and $_{CFm}$) must be defined according to the EC6, EC8-1 and EC8-3 codes. Therefore, in the results tab we need to select the appropriate type. In this study, "Existing (EC8.3)" Masonry has been selected.

χ Ανάλυση	Αποτελεσματα Δ	ιαστασιολόγηση	Ξυλότυποι	Πρόσθετα	Βελτιστοπο
γιση Αναφορά σεων Ιδιοτήτων * Βοηθητικ	μία Επεξεργασία φορτίων ά	ιστοχίας οιίας			
Q Q (Q Q G	🔍 髦 🔽 🖉 🖉 😨	ας Τοιχοποιίας	×		×
	Όνομα κριτηρίου	Karantoni et al			~
	Είδος τοιχοποιίας	; Υφιστάμενη (Ε	C8.3)		~
		Αποτελέσματα	OK	Ca	ncel

5.2.2 Criterion results

The results of the criterion are given in two forms: We can

therefore choose to look at the criterion:

- either with FORM 1 (scF)
- either with **FORM 2 (scS)** in each of these three places.

Επιλογη Μεγαλους									- 8
Engensiood	 dt0X dt0X dtX <lidtx< li=""> <lidtx< li=""> <lidtx< li=""> dtX</lidtx<></lidtx<></lidtx<>	Colopmon S S S S S S S S S S S S S S S S S S S	Ŷ	* MUNIC 30	Pik	Select Al	Chier Al	77 Re	ithos,

If the display based on the is selected ??

Επιλογές	×
Ολα τα στοιχεία 🗸 🗸	Ολες οι τιμές 🛛 🗸
Εύρος τιμών	
Anó 0	Εως 0
🗹 Απεικόνιση με βάση τ	ο πρόσημο
ОК	Cancel

then the vector is coloured according to the value of the criterion:

- BLUE for Sufficiency
- **RED** for **INADEQUACY**
- **GREEN** for material other than masonry (e.g. concrete)

To better evaluate the results of the audit, there are two options:

1. If desired, in the size selection bar, select the REPORT command.

This command prints the values of the tested size per surface element.

Name	Comb.	F
*****	Plegma	- \$30 ******
696	4	-0.549
697	4	-0.573
698	4	-0.625
699	4	-0.731
700	4	-0.798
701	4	-0.807
702	1	-0.761
703	4	-0.748
704	4	-0.679
705	4	0.333
706	4	-0.519
707	4	-0.338

2. From the command MORTGAGE Criterion we see an aggregate issue with details of the adequacy or otherwise of each mesh.

From the dropdown list we select the format and the location of the criterion. Click on the **RESULTS** command to print the issue.

Κριτήριο Αστοχίας Τοιχοποιίας		
Κριτήριο Αστοχίας	Τοιχοποιίας	×
Όνομα κριτηρίου	Karantoni et al.	~
Είδος τοιχοποιίας	Υφιστάμενη (EC8.3)	~
sc(F) 🗸 🗸	Αποτελέσματα ΟΚ	Cancel

The resulting issue has the following format.

							Σελιοα : 1			
		Κρι	τήριο Αστοχί	ας Τοιχοποιί	ας					
Ούομα τριτιρισσΓκαταπιστή ετ αι.Είδος τοιχοποιίαςΥφιστάμενη (EC8.3)Εξεταζόμενη ΘέσηΜέση ΕπιφάνειαΠεριγραφή Κριτηρίου $F = \alpha J_2/t_v^2 + \lambda J_2^{(12)}/t_w + \beta I_1/t_w - 1$ ΕΠΑΡΚΕΙΑ :Για σ* ≤ 1ΑΝΕΠΑΡΚΕΙΑ :Για σ* > 1										
			Έλεγχος Π	λεγμάτων						
Όνομα Π	λέγματος : Ρ	LATE \$1/1/2		Υλικό :	Μπατική οπτοπλιθ	οδομή-Μ2 25	cm			
Αντοχή σε θλίψη $f_w = 2.000$ (N/mm ²) γ _M = 2.20 / 1.50 Αντοχή σε εφελκυσμό $f_{wt} = 0.170$ (N/mm ²) CF = 1.35 Αντοχή σε ίση διαξονική θλίψη $f_{wc,b} = 3.500$ (N/mm ²)										
Παράμετρ	οι Κριτηρίου :	α = β =	1.917 k 4.086 f	b = 1.750 = 0.085	$c_1 = 13.267$ $c_2 = 0.959$	$\lambda_1 = 0.581$ $\lambda_2 = 0.995$				
			Συνολική		Κρίσιμος Συνζ	ουασμός				
Πλήθος Στοιχείων	Συνολική Επιφάνεια (m²)	Πλήθος Στοιχείων που Αστοχούν	Επιφάνεια Αστοχίας (%)	A.A.	Πλήθος Στοιχείων που Αστοχούν	Συνολική Επιφάνεια Αστοχίας (%)	σ^{*}_{max}			
242	10.00	4	0.88	43	3	0.56	1.28			
Όνομα Π. Αντοχή σε Αντοχή σε Αντοχή σε Αντοχή σε Παράμετρ	#####################################	LATE S1/2/3 f _w = f _{wt} = j θλίψη f _{wc_b} = α = β =	2.000 (N/n 0.170 (N/n 3.500 (N/n 1.917 b	H##################### nm ²) γ _M = 2 nm ²) CF = 1 nm ²) cp = 1.750 c = 0.085	#####################################	#####################################	########			
		р-	4.000	- 0.005	02 - 0.000	n ₂ = 0.000				
Πλήθος Στοιχείων	Συνολική Επιφάνεια (m²)	Πλήθος Στοιχείων που Αστοχούν	Συνολική Επιφάνεια Αστοχίας (%)	A.A.	Κρίσιμος Συνζ Πλήθος Στοιχείων που Αστοχούν	ουασμός Συνολική Επιφάνεια Αστοχίας (%)	σ* _{max}			
526	25.80	0	0.00	35	0	0.00	0.76			
Τονομα Πλέγματος : PLATE \$1/3/2 Υλικό : Μπατική οπτοπλιθοδομή-M2 25 cm										

6. DIMENSIONING

6.1 Creation of a dimensioning scenario for the inspection of a load-bearing masonry structure based on the Eurocode:

For the control of load-bearing masonry structures SCADA Pro incorporates the Eurocode 6 controlsIt is therefore necessary to create a Eurocode-based dimensioning scenario in order to perform the relevant checks via the 'Masonry Control' command.

Scenario			Х	In the "Sizing" module and in the "Scripts"
1	Ονομα			1. Contraction of the second s
	Τύπος	EC6-EC8(3)	\sim	command group select the command Néo to
	Nέo	EKΩΣ 2000-EAK EC2-EC3		create a Eurocode scenario.
Εξοδος	Διαγραφή Σκυρό Σιδηρά	NTC_2008 EC2_Italia EC2_Cyprus Παλαιός 1959-84 Παλαιός 1984-93 Austria SBC304-306 FC5		Select Type EC6-EC8(3), give it a name and press the New button.
		EC6-EC8(3) EC2-W/O EC8		
EC6-EC8(3) (1) Ένεργό Σενάριο	ith "Activ	e" the new scr	ipt. s	elect the command , μετροι

In the dialog box, select from the list the file of combinations you saved

previously and Υπολογισμός Συνδυασμών . The program calculates the combinations and closes the window by pressing the OK button.

	κός Κόμβω	v			Σιδηρα	ΰν				Ξ	ύλινα	
Συνδυασμοί	Πλά	ίκες	Δο	Δοκοί Στύλοι			Πέδιλα Οι			Or	ιλισμο	
υνδυασμοί Σετ	Φορτίσεων	v	(101)	Аот.	Λειτ.	+	x	X	+	Z	Z	No
Συνδυασμοί										Λ/A	Κατ	ά ^
1(5) +1.35Lc1	+1.50Lc2									A		
2(1) +1.00Lc1	+0.50Lc2									A		
3(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c4+1.0	0Lc5+0	.30Lc6	5+0.	30Lc7		Α	+X	
4(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c4+1.0	0Lc5+0	.30Lc6	50.	30Lc7		Α	+X	
5(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c4+1.0	0Lc50	.30Lc6	5+0.	30Lc7		Α	+X	
6(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c4+1.0	0Lc50	.30Lc6	50.	30Lc7		Α	+X	
7(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c41.0	0Lc5+0	.30Lc6	5+0.	30Lc7		Α	+X	
8(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c41.0	0Lc5+0	.30Lc6	50.	30Lc7		Α	+X	
9(2) +1.00Lc1	+0.30Lc2+	+1.00Lc	3+0.30L	c41.0	0Lc50	.30Lc6	5+0.	30Lc7		Α	+X	
10(2) +1.00Lc	1±0,30172									-	- N	· · · ·
/	140.30002	+1.00L	c3+0.30	Lc41.	00Lc5	0.30Lo	:60).30Lc7		A	+X	<u> </u>
<	140.30202	+1.00L	c3+0.30	Lc41.	00Lc5	0.30Lo	:60).30Lc7		A	+X	>
< ωντελεστές Στά	ίθμης	+1.00L	c3+0.30	Lc41. - 0)	00Lc5	0.30Lo	:60).30Lc7		A	+X	>
< ωντελεστές Στά Στάθμη	ίθμης Χ	Y	c3+0.30 1/(1 Z	Lc41. -θ)	00Lc5 de'	0.30Lo fault.co	:60 mb).30Lc7	: (1)	A .cmb	+X	>
< ωντελεστές Στό Στάθμη	ίθμης X	Y	1/(1 Z	-θ)	00Lc5 der	6.30Lo fault.co -8_Gre -8_Gre	mb eek D),30Lc7)ynamio itatic ((: (1))).cr	A .cmb nb	+x	>
< τοντελεστές Στό Στάθμη 0 - 0.00 1 - 225 00	iθμης X 1.000	Y 1.000	1 / (1 Z 1.00	-θ)	der	ault.co 8_Gre 8_Gre	mb eek D),30Lc7)ynamio itatic ((ynopoc	: (1))).cr	A .cmb nb		>
< ωντελεστές Στό Στάθμη 0 - 0.00 1 - 325.00	iθμης X 1.000 1.000	Y 1.000 1.000	1 / (1 Z 1.00 1.00	-θ) 00 00	der	6.30Lo Fault.co -8_Gre -8_Gre	mb eek D eek S),30Lc7)ynamio itatic ((рүюрос	(1))).cr	A .cmb	+x	>
< τυντελεστές Στά Στάθμη 0 - 0.00 1 - 325.00 2 - 630.00	iθμης X 1.000 1.000 1.000	Y 1.000 1.000	1 / (1 Z 1.00 1.00 1.00	- 0) 00 00	der	0.30Lo fault.co -8 Gre -8_Gre T	mb eek D eek S), 30Lc7)ynamio itatic ((γιομος πυός G:	(1))).cr ,zu	A .cmb vood	+x	>
< ταντελεστές Στά Στάθμη 0 - 0.00 1 - 325.00 2 - 630.00 3 - 930.00	iθμης X 1.000 1.000 1.000 1.000	Y 1.000 1.000 1.000 1.000	1 / (1 Z 1.00 1.00 1.00 1.00	-θ) 00 00 00 00	der der	0.30Lo fault.co -8_Gre -8_Gre Συνί	mb eek Ω eek S).30Lc7)ynamio itatic (Ο γιομος πμός G-	(1))).α +ψ2	A .cmb nb Q	+X 2000 2000 101	> ````````````````````````````````````
 Ουντελεστές Στά Στάθμη 0 - 0.00 1 - 325.00 2 - 630.00 3 - 930.00 4 - 1230.00 	iθμης X 1.000 1.000 1.000 1.000 1.000	Y 1.000 1.000 1.000 1.000 1.000	1 / (1 Z 1.00 1.00 1.00 1.00 1.00	-0) 00 00 00 00 00		0.30Lo Fault.co -8_Gre -8_Gre Συνί Αυτόμ	c6C mb eek Σ eek S δυασ), 30Lc7)ynamid itatic (Ο γιομοτ πμός G- Διαστα	; (1))).cr +ψ2	A .cmb nboat Q όγησ	+χ ομων 101 η Μελ	>
 	iθμης X 1.000 1.000 1.000 1.000 1.000 1.000	Y 1.000 1.000 1.000 1.000 1.000 1.000	1 / (1 Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-0) 00 00 00 00 00 00 00 00 00	der CEC	0.30Lo Fault.co -8 Gre -8 Gre -8 Gre τ Συνί Αυτόμ παναυ	c6C mb eek D eek S mont δυασ), 30Lc7 Ογηαπίο Ιτατίς (Ο γισμός G- Διαστα	<mark>: (1)</mark>)).α)).α +ψ2 πολ	Α cmb nboui Q Q νεθών	+X σμων 101 η Μελ ν ΚΑΝ	> ````````````````````````````````````
 Ουντελεστές Στά Στάθμη 0 - 0.00 1 - 325.00 2 - 630.00 3 - 930.00 4 - 1230.00 5 - 1530.00 6 - 1830.00 	iθμης X 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Y 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1 / (1 Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-θ) 00 00 00 00 00 00 00 00 00 0	↓ der CEC	0.30Lo Fault.co -8 Gre -8 Gre Συνί Αυτόμ παναυ Ενερ	c6C mb cek D cek S δυασ ατη ι πολα), 30Lc7)γηαμία ίtatic ((γησμός G- Διασταί ογισμός ΄λικό Δ	<mark>: (1)</mark>)).cr +ψ2 πολ ; με\	Α mb ηνουαα Q ο όγησ ασιο λ	+χ ομων 101 η Μελ ν ΚΑΝ	> έτης .ΕΠΕ. 1ς
 	iθμης X 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Y 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1 / (1 Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	-θ) 00 00 00 00 00 00 00 00 00 0	oolc5	0.30Lo Fault.co -8 Gre -8 Gre	c6C mb eek D eek S πολα ατη ι πολα), 30Lc7 Ογηαπίο Ιτατίς ((γισμός G- Διασται ογισμός Άκό Δ	<mark>: (1)</mark>)).cr)).cr +ψ2 πολ ; με\	Α cmb nb υσσαί Q Q (εθών ασιο)	101 η Μελ ν ΚΑΝ	> έτης ΕΠΕ. 1ς

6.2 Checking of load-bearing masonry structures according to EPC 8 part 3

In SCADA Pro the provisions of EC8-3 for the evaluation of buildings made of load-bearing masonry under seismic loading have been implemented. The recommendations of the regulation apply to masonry elements resisting lateral forces within their plane. This includes both the lintels and the lintels of a wall.

The checks applied are at the cross-sectional level of the pile/floor, where the prevailing intensive magnitude is either:

- the axial force and bending, either
- the cutting machine

The critical failure of the masonry element is therefore obtained and its load-bearing capacity is calculated accordingly for all three performance levels A, B and C.

After the process is complete, select the command

In the dialog box that opens, you are asked to specify the walls in the same way as described in "New masonry building".

				38 4.) (~	Τεύχος	Στ	άθμη Επιτε στικότητα	ελε-	Στάθμη Αξιοριστία	ic.
Περιγρα	αφή	[A - DL	~	Ανεκτή	~
		Εμφάνιση						1		Τρόπος Δόμησι	ης
l(cm)	0	Pick								Με συμπαγείς π	λίνθους \sim
h(cm)	0	Pick								Κάμψη εκτος ε	υοδṡπιπ:
Δέσμευα	ση: 4	πλευρές 🗸								Κλασσική Θι Ο Θεώρηση Α	εώρηση δρανούς
Νεο	ς	Ενημέρωση								ι περιοχής	
Διαγρα	φή	Ενίσχυση								🔲 Προσχέδιο Ρ	KAΔET
Ελεγχ	(ος	Ελεγχος Συνολι	á	Αποτελέσματα	i i	Αποτελέ	σματα	Συνολικά		Έξοδα	ος

For more convenience when defining the walls, select all layers and make them "Invisible". Then select the "Lines-Circles" layer and press the "Visible" button. In this way, selecting the points for defining the dimensions of the walls with the corresponding picks becomes much easier.

Define the walls by entering a Description (at least 4 characters and/or numbers) and press the "New" button. Then press Pick to define the height and width respectively. The definition of the dimensions is done graphically (by left-clicking on the start and end points) using the appropriate pulls and "Update".

OBSERVATIONS:

The identification of pins/recesses is done automatically by the program. So you define the whole wall with the openings and the program automatically checks by automatically distinguishing between pins and lintels (meaning the wall sections above and below the openings)

In the design and assessment of load-bearing masonry structures with finite surface elements (EC6 and CAN.EPE), a new button has been added "Show."

		×][Τεύχος	Στάθμη Επιτελε στικότητας	- Στάθμη Αξιοπιστίας
Περιγραφή				A + DL	Ανεκτή ~
- 1	Εμφάνιση				Τρόπος Δόμησης
l(cm) 0	Pick				Με συμπαγείς πλίνθους 🗸
h(cm) 0	Pick				Κάμψη εκτος επιπέδου
Δέσμευση: •	4 πλευρές 🗸 🗸				Κλασσική Θεώρηση Θεώρηση Αδρανούς
Νεος	Ενημέρωση				μητριοχής
Διαγραφή	Ελεγχος Απλή				Προσχέδιο ΚΑΔΕΤ
Ελεγχος	Ελεγχος Συνολικ	Αποτελέσματα	Αποτελέα	οματα Συνολικά	Έξοδος

which allows the graphic appearance of the active wall.

λουτοία Ελεγχος Τοιχ	οποιίας: Νέο κτί
22222	
Περιγραφή	22222
	Εμφάνιση
l(cm) 372	2.30 Pick
h(cm) 300) Pick
Δέσμευση: 4	πλευρές 🗸 🗸
Νεος	Ενημέρωση
Διαγραφή	Ελεγχος Απλή
Ελεγχος	Ελεγχος Συνολικ

You select the Performance Level

- Direct Use (DL): control in terms of forces
- Life Protection (SD): control in terms of relative displacement,

• Quasi-Collapse (NC): control in <u>terms of relative displacement</u> and then,

Στάθμη Επιτελεστικότητας A - DL → A - DL B - SD Γ - NC

6.2.1 Check

Check to perform the checks at the cross-sectional level of the selected wall's pier/section.

ΕΛεγχ	ος									
Ελεγχος	Τοιχο	οποιίας: Απο	τίμηση (Ε	C8-3	3)					×
1111		1.				~	Τεύχος	;	Στάθμη Επιτελε στικότητος	- Στάθμη Αξιοπιστίας
Περιγρα	ιφή	1111							B - SD 🔍	Ανεκτή 🗸
l(cm)	460.	05 Pick	Ελεννα	oc.	λόνος	D	Vf1	Vf2	Ved	Τρόπος Δόμησης
h(cm)	449	Pick	Πεσσό	c 1	0.132(62)	4.60	432.65	339.6	54 -536,10	Απο αργολιθοδομή 🛛 🗸
Δέσμευα	ση:4 r	ιλευρές 🗸		18						Κάμψη εκτος επιπέδου
Νεοσ	ς	Ενημέρωση								Θεώορση Αδοσγούς
Διαγρα	φή	Ενίσχυση	<						>	περιοχής
Ελεγχ	ος	Ελεγχος Συνο	λικά	Anor	τελέσματα	Αποτελέσ	ματα Συνολικ	á	Εξοδος	Προσχέδιο

The adequacy checks are performed at the level of the pile/span cross-section and in terms of forces and deformations according to the Performance Level.

6.2.2 Control Total

Check Overall to automatically carry out checks at the cross-sectional level of the footing/section of all certain walls.

Ελεγχος	Συνολικά										
Ελεγχος Τοιχοποιίας: Αποτίμηση (ΕC8-3)											
1111 · Τεύχος Στάθμη Επιτελε- στικότητος Αξιοπισ											
Περιγραφή	ιγραφή 1111 Β - SD 🗸 Ανεκτή 🗸										
l(cm) 50	1.48 Pick	Pick Ebstware D Vf1 Vf2 Ved									
h(cm) 44	9 Pick	1133	0.164(7)	5.01	12.63	1.36	331.	Απο αργολιθοδομή	\sim		
∧ຮ່ອນຮະບອກ: 4		2233	0.566(5)	2.11	4.11	0.82	143.	Κάμψη εκτος επιπέδου -			
	Fincopec, •	1111	0.132(62)	4.60	432.65	339.6	4 -536	🗌 Κλασσική Θεώρησ	η		
Νεος	Ενημέρωση	3333	0.205(66)	4.60	450.73	339.6	4 -396 🗸	🖂 Θεώρηση Αδρανο	ύς		
Διαγραφή	Ενίσχυση	<					>	περιοχής			
Ελεγχος Ελεγχος Συνολικά Αποτελέσματα Αποτελέσματα Συνολικά Εξοδος Προσχέδιο											

- Proficiency checks are carried out at the level of the pile/support cross-section and in **terms** of forces and deformations, depending on the <u>Performance Level</u>.
- The following quantities are calculated:

N: Axial compressive load of a pile or lintel (vertical for pile, horizontal for lintels), after integration of the corresponding normal stresses ($\sigma xx, \sigma yy$) of the surface finite elements forming the control section.

M: Cross-sectional force is calculated by integrating over all finite elements the product of the compressive axial force of each element on the lever arm between the centroid of the element and the centre of the cross-section.

HO: Distance between the cross-section in which the bending capacity is achieved and the point of zero moment. It is determined by the eccentricities at the base and top of the wall. In the case where both ends are buttressed H0=H/2. In the case where the eccentricities are homopolar, a limit H0 \leq 2·H has been adopted.

D' : Breaking length of control cross-section. ccentricity of the compressive axial load (**e=M/N**):

D = D'

• **e**≤ **D/6** , then D'=D ,

• **D/6≤ e≤ D/2**, D=3·(0.5·D - e)

V: Cutting force in the control section, after integration of the normal stresses of the surface elements

Calculation of bending and shear capacity of the wall in terms of shear Vf. The worst condition is obtained and the wall is checked according to the Performance Level.

語言語を				Δια Είδ Τύτ	στάσεις ος τος	: Μήκος : Μπατικ : Μονός	(Ι) =10.95 (ή οπτοπλ τοίχος	(m) Ύψο ιθοδομή	ς (h) = 3.50(-M2 25 cm	m)		
1	and the second			loo	δύναμο	Πάχος tef	(cm) :	= 25.00	500	0040	F00 (00 C (2)	
21				Στά	τελεστη θωη Επι	ς ασφαλεί τελεστικό	ας γινι : ιπτας	B - SD	ECO	(82.4.3)	EC6 (89.0.(3)	0.5
				Eπi	πεδο Γι	ώσης: Ι	ΕΓ1:Περιο	ρισμένη		CF	m = 1.35	
4	Αντοχές	Τοιχοπο	οιίας :	Xap Méd	οακτηρισ ση Θλιπτ	τική θλιπτ ική αντοχ	niκή αντοχ ή fm (N/m	ή fk (N/m m2)	1m2)	- ().79 1.19	
				Ap) Ap) Mé	ακή χαρ ακή μέσι αστη δια	ακτ. διατμ. η διατμ. αν τμητική α	αντοχή fv τοχή fvmi ντοχή fvki	k0 (N/mn 0 (N/mm2 max (N/m	n2) () (m2)). 10 0. 15 0. 08	
	0	20 0		1	τοιχεία	кан Хара	ακτηρισμο	ός Πεσσι	ών			
	. Υψος Πάχος				χή στοιχ ιμη και κ	είου υπό άμψη	αξονική	τοιΔ στοιχεί	μητική αντα ου υπό διάτ	γχή Γμηση	Характа-	
a/a	(cm)	(cm)	Ho (cm)	D (cm)	N (kN)	vd (x10-3)	Vf (kN)	D' (cm)	fvd (MPa)	Vf (kN)	ρισμός	Συνδ
1	350.0	50.0	182.3	494.9	-32.3	14.8	43.1	494.9	38.2	94.7	Κάμψη	58
2	350.0	50.0	610.4	350.0	0.0	0.0	0.0	0.0	38.2	0.0	Διάτμηση	37
3	330.0	50.0	330.0	50.0	-0.0	3.0	0.1	50.0	30.2	5.0	καρφη	35
		1	Ελεγχοι Ε	πάρκει	ας Πεσσ	τών σε ό	ρους δυν	άμεων ή	παραμορι	ρώσεων		
	Στάθ). Επιτελ (Δυνάμε	εστ. Α ις)			Στά	θμες Επι (Παρ	τελεστικ αμορφώ	ότητας Β ή σεις)	Г		Επά
ara	Ved (kN)	Vf (kN)	Ved / Vf	uj (mn	n) (ui mm)	φj (rad)	φi (rad)	δed (rad)	ðu (rad)	ðed / ðu	a
1				0.1	346	-0.0674	0.0597	0.000	1 0.030	0.0	10.167	Οχι
2				2.2	763	0.0000	0.5134	0.017	4 0.266	0.0	66.516	OXI
3				2.9	203	0.0000	0.1202	0.000	0 0.064		1.147	
-		1						-			-	

Overall masonry characteristics:

- Wall geometry
- Performance level
- Safety factors

(Knowledge Level, Quality Control Level, Quality Control Level

- Typical Masonry Strength Values

Calculation of the flexural and shear capacity of the pile/span in terms of shear Vf and characterisation according to the worst case case.

Proficiency check depending on the choice of the Performance Level:

Direct Use (A): control in terms of forces

Life Protection (B):

Control in terms of relative displacement,

Quasi-Collapse (C): Control in terms of relative displacement.

6.2.3 Incorporation of the provisions of the CPR

SCADA Pro offers the possibility to evaluate the masonry according to the draft of the KADET.

If we also check the "Draft CADET" option, all checks are based on the CADET.

OBSERVATION:

The out-of-plane bending was introduced as an independent option from the CADET in order to give the designer the possibility to include these checks also in case he makes a valuation with EC8-3 (unchecked "Draft CADET)")

6.2.4 In-plane bending and shearing

For IN-PLANE COLLAPSE AND STRETCH you have the option to choose to calculate the strengths either according to EC8 part 3) (unchecked "Draft CADET)", or according to CADET.

6.2.5 Bending out of level

For OFF-LEVEL checks we always refer to the provisions of the KADET (regardless whether or not the "Draft" is activated).

- For Performance Level A, checks in terms of forces
- 1. At the same time in the horizontal joint

Two methods were incorporated to calculate the load-bearing capacity of unreinforced masonry elements in out-of-plane bending:

1.1 With an inactive area visa

Στάθμ στιι Α ·	η Επιτελε ώτητας · DL 🛛 🗸	Στάθμη Αξιοπιστίας Ικανοποιητική ~
ed	δυ	Τρόπος Δόμησης
5.11	0.323	Απο αργολιθοδομή 🛛 🗸
9.05 9.18	0.312 0.161	Κάμψη εκτος επιπέδου Κλασσική Θεώρηση
	>	Περιοχής
E	ξοδος	Προσχέδιο

I activate the option "Visit inactive area"

The first method is in accordance with paragraph 7.6a of paragraph 7.3 of K.A.D.E.T. by <u>considering the</u> <u>inert area</u> for bending about a horizontal axis using the following formula

$$M_{Rd1,o} = \frac{1}{2} \ell t_w^2 \sigma_0 \left(1 - \frac{\sigma_0}{f_d} \right)$$
(7.6a)

fd : the compressive strength of the masonry (the average compressive strength is used in the programme)

fm divided by the corresponding safety factor)

1.2 With an inactive area visa

The second method is according to the <u>classical view of the overlap of the solids of the stresses</u> (not included in the KADET) and the following relation is applied:

$$\frac{Mma}{x_{1}} = (fxd_{1} + vd * fd) * t^{2} * 1 / 6$$

fxd,1 : fxk,1/cm Flexural design strength of masonry for bending parallel to the horizontal joints nd*fd = $\sigma 0$

t : wall thickness I : length of the wall

OBSERVATIONS

As for the two different methods, the options are shown in the following dialog box

11111		ŕ.				×	Τεύχι	ος	Στάθμη Επ στικότη	ιτελε τας	- Στάθμη Αξιοπιστίας
Περιγρα	φή	11111							A - DL	\sim	Ανεκτή 🗸
l(cm)	1318	8.7 Pick	Ελενχ	(OC	λόνος	D	Vf1	Vf2	Ved	^	Τρόπος Δόμησης
h(cm)	570	Pick	Πεσσά	ός 1	1.907(1)	1.23	10.40	128.88	-19.		Με συμπαγείς πλίνθους 🗸
Λέσιμεμα	m:4 n	ιλευρές 🗸	Πεσσά	ός 2	1.703(1)	2,24	8,80	159.19	-14.		Κάμψη εκτος επιπέδου
			Πεσσά	ός 3	0.507(1)	2.00	6.12	143.21	-3.1	1	🗹 Κλασσική Θεώρηση
NEOG	5	Ενημέρωση	Πεσσά	ός 4	2.788(1)	0.81	2.44	81.36	-6.8	~	
Διαγρα	φή	Ενίσχυση	<						>		Μ περιοχής
Ελεγχ	oc	Ελεγχος Συνο	λικά	Ano	τελέσματα	Αποτελέ	σματα Συνολ	νικά	Εξοδο	ç	Προσχέδιο Κ.Α.Δ.Ε.Τ.

- To perform the check in OUT OF LEVEL DIP for performance level A check the method or methods respectively.
- If we also check the "Draft CADET" option, all checks are based on the CADET.
- The out-of-plane bending was introduced as an independent option from the CADET in order to give the designer the possibility to include these checks also in case he makes a valuation with EC8-3 (unchecked "Draft CADET)")

The results are shown in the following printout (parallel to the horizontal joint)

		Ετ	τανέλεγχο	ς σε Κάμψ Στάθ	η - Έλεγχα)μη Επιτελ	ος Επάρκει εστικότητα
α/α	t	Έλεγχος	σε κάμψη στον	εκτός επι οριζόντιο	πέδου πα αρμό	ράλληλα
	(cm)	σ _d (kN/m2)	M _{Rd1,o} (kNm)	M _{ed} (kNm)	M _{Ed} / M _{Rd1,0}	Επά ρκεια
1	65.0	9.33	2.41	-2.45	1.02	Οχι
2	65.0	23.34	10.87	-1.61	0.15	Ναι
3	65.0	25.41	10.55	-0.97	0.09	Ναι
4	65.0	24.06	4.05	-0.14	0.03	Ναι
5	65.0	25.89	6.50	-0.97	0.15	Ναι
6	65.0	12.01	2.94	-1.80	0.61	Ναι

	Επανέλεγχος σε Κάμψη - Έλεγχος Επάρκειας - Σ											
α/α	t	Έλεγχος σε κάμψη εκτός επιπέδου παράλληλα στον οριζόντιο αρμό										
	(cm)	σ₀ (kN/m2)	M _{max,1} (kNm)	M _{≊d} (kNm)	M _{Ed} / M _{max,1}	Επά ρκεια						
1	65.0	9.33	4.02	-2.45	0.61	Ναι						
2	65.0	23.34	9.52	-1.61	0.17	Ναι						
3	65.0	25.41	8.79	-0.97	0.11	Ναι						
4	65.0	24.06	3.49	-0.14	0.04	Ναι						
5	65.0	25.89	5.36	-0.97	0.18	Ναι						
6	65.0	12.01	4.03	-1.80	0.45	Ναι						

Note that the magnitude σd is common because it is used in both calculations. Of course, MEd is also the same.

2. Parallel to the vertical joint / Perpendicular to the horizontal joint

2.1 With an inactive area visa

	Στάθμη Επιτελε στικότητας Α - DL 🛛 🗸		Στάθμη Αξιοπιστίας Ικανοποιητική ~	
3	d	δu	Τρόπος Δόμησης	
5	5.11	0.323	Απο αργολιθοδομή 👘 🖂	
9	9.05 0.312 9.18 0.161		Κάμψη εκτος επιπέδου	
ļ			Κλασσική Θεώρηση	
Ì		>	Θεώρηση Αδρανούς Γ΄ περιοχής	
	E	ξοδος	Προσχέδιο	

activate the option "Visit inactive area"

(7.6B)

The first method is in accordance with paragraph 7.6b of paragraph 7.3 of K.A.D.E.T. by <u>considering</u> <u>the inert area</u> for bending about a horizontal axis using the following formula

$$M_{Rd2,o} = \frac{1}{6} f_{wt,d} \cdot t^2 \ell$$

 ℓ και t_w το μήκος και το πάχος της καμπτόμενης διατομής του στοιχείου αντιστοίχως

 $f_{wt,d}$ η εφελκυστική αντοχή της τοιχοποιίας (= f_{wt}/γ_w).

Attention, here the regulation speaks about the length of the bending section of the element and since we are in the case of the moment about the vertical axis, I in the formula is the height of the wall.

2.2 With an inactive area visa

Στάθμη Επιτελ στικότητας	ε- Στάθμη Αξιοπιστίας
A - DL 🗠	Ικανοποιητική 🛛 🖂
ed δu	Τρόπος Δόμησης
5.11 0.323	Απο αργολιθοδομή 👘 🖂 🖂
9.05 0.312	- Κάμψη εκτος επιπέδου —
99.18 0.161	🗸 Κλασσική Θεώρηση
>	Θεώρηση Αδρανούς Περιοχής
Εξοδος	Προσχέδιο

activate the option "Classical View"

The second method is according to the classical view of the overlap of the solids of the stresses (not included in the KADET) and the following relation is applied:

$$M_{max_{2}} = fxd_{2} * t * h/6$$

fxd,2 : fxk,2/cm Flexural design strength of masonry for bending perpendicular to the horizontal joints t : wall thickness

h : height of the wall

We note that the two formulas are the same, the only difference being that in the first case the tensile strength of the masonry is introduced, while in the second the flexural strength corresponding to this direction is introduced.

This is why the results shown in the printout below

ίρ κει τητο	ας Κ.Α.Δ. ις Α	Ε.Τ. παρ.7	.3									
٨α	Έλεγχος σε κάμψη εκτός επιπέδου παράλληλα στον κατακόρυφο αρμό											
ά ια	M _{Rd2,0} (kNm)	M _{Ed} (kNm)	M _{Ed} / M _{Rd20}	Επά ρκεια								
Οχι	59.46	0.13	0.00	Ναι								
Ναι	59.46	-0.08	0.00	Ναι								
Ναι	59.46	-0.17	0.00	Ναι								
Ναι	59.46	-0.11	0.00	Ναι								
Ναι	59.46	-0.13	0.00	Ναι								
Ναι	59.46	0.31	0.01	Ναι								

; -)	- Στάθμη Επιτελεστικότητας Α											
٨α	Έλεγχος σε κάμψη εκτός επιπέδου παράλληλα στον κατακόρυφο αρμό											
ά ια	M _{max, 2} (kNm)	M _{≊d} (kNm)	M _{Ed} / M _{max, 2}	Επά ρκεια								
	59.46	0.13	0.00	Ναι								
1	59.46	-0.08	0.00	Ναι								
	59.46	-0.17	0.00	Ναι								
1	59.46	-0.11	0.00	Ναι								
	59.46	-0.13	0.00	Ναι								
	59.46	0.31	0.01	Ναι								

are exactly the same because the same value is set for the tensile and flexural strength.

Performance Levels B and C checks in terms of deformations

OBSERVATION:

For the checks to be performed, <u>both options</u> in the out-of-plane bend must be checked, regardless of whether or not the "Draft KADET)

-		
		×
Στάθμ στιι	η Επιτελε- ιότητας	Στάθμη Αξιοπιστίας
В -	SD	Ικανοποιητική 🗸 🗸 🗸
	NC	Τρόπος Δόμησης
5.11	0.323	Απο αργολιθοδομή 🛛 🗸
9.05	0.312	Κάμψη εκτος επιπέδου
9.18	0.161	Κλασσική Θεώρηση
	>	Θεωρήση Ασράνους περιοχής
E	ξοδος	Προσχέδιο

Checks are presented for bending parallel to the vertical joint and correspondingly parallel to the horizontal joint.

The final angular deformations shown have been multiplied by incremental factors based on the following:

To check performance criteria B and C, the inelastic movements (dinel) of the building are required. relationship between the former and the latter is given in the comments paragraph 5.4.4 of the

K.A.D.E.T.

$$\frac{d_{inel}}{d_{el}} = 1 \text{ for } T \ge T \qquad (\Sigma.5.3)$$

$$\frac{d_{inel}}{d_{el}} = \frac{1.0 + (q-1)}{q} \frac{T_c}{T} \text{ for } T < T \qquad (\Sigma.5.4)$$

A coefficient is calculated per direction and used depending on the type of seismic combination (x or z)

IMPORTANT!!

To calculate this coefficient, q and Tc are required. In order for the program to read them, the controls in the analysis must be opened.

If you want to see the actual deformations put q=1 in the analysis or use a non-seismic combination (the augmentation is only done for seismic ones)

3.1 At the same time the vertical joint

The angular deformation developed is of the following form

The results of the project are as follows

		Επανέλε	εγχος σε Κ	άμψη - Έ	λεγχος Ε	πάρκεια	ς - Στάθμ	η Επιτελ	εστικότητ	rα <mark>ς</mark> Β και	Г	
	Έλεγχος σε κάμψη εκτός επιπέδου παράλληλα στον κατακόρυφο αρμό											
α/α	ц (mm)	u _l (mm)	δed (mrad)	θ _{u,1} (mrad)	Fy (kN)	F _{Rd} (kN)	θ _{Ru} (mrad)	θ _{u,2} (mrad)	θ _u (mrad)	R₀ (mrad)	δ _{ed} / R₀	Επά ρκεια
1	0.270	0.006	0.682	5.677	9.85	57.64	528.455	90.304	5.677	2.838	0.24	Ναι
2	0.274	0.003	3.819	1.043	8.75	104.98	2877.403	239.773	1.043	0.521	7.33	Οχι
3	0.279	0.003	0.549	7.376	6.08	93.73	406.730	26.397	7.376	3.688	0.15	Ναι
4	0.275	0.003	1.580	2.531	2.35	37.96	1185.357	73.394	2.531	1.265	1.25	Οχι
5	0.275	0.002	0.738	5.416	13.24	56.71	553.939	129.358	5.416	2.708	0.27	Ναι
6	0.270	0.002	0.730	5.389	16.78	54.72	556.731	170.692	5.389	2.694	0.27	Ναι

For the calculation of all the above quantities (angular deflection δ ed and failure deflection Rd) the distance L shown in the above figures was used

3.2 At the same time in the horizontal joint

The angular deformation developed is of the following form

C.

Σχήμα Σ7.1.9: Ορισμός οριακής στροφής $\partial_{R,u}$ The results of the project are as follows

		Επανέλ	εγχος σε Κ	ίάμψη - Έ	έλεγχος Ε	πάρκεια	ς - Στάθμ	η Επιτελι	στικότητ	ας Β και	Г	
			Έλεγχος	σε κάμψη	εκτός επι	πέδου πο	ράλληλα	στον οριζ	όντιο αρμ	ó		
α/α	ц (mm)	u _l (mm)	δed (mrad)	θ _{u,1} (mrad)	F _y (kN)	F _{Rd} (kN)	θ _{Ru} (mrad)	θ _{u,2} (mrad)	θ _u (mrad)	R₀ (mrad)	δ _{ed} / R _d	Επά ρκεια
1	0.270	0.006	0.160	24.231	9.85	57.64	123.810	21.157	21.157	10.579	0.02	Ναι
2	0.274	0.003	0.170	23.456	8.75	104.98	127.902	10.658	10.658	5.329	0.03	Ναι
3	0.279	0.003	0.185	21.935	6.08	93.73	136.767	8.876	8.876	4.438	0.04	Ναι
4	0.275	0.003	0.183	21.818	2.35	37.96	137.501	8.514	8.514	4.257	0.04	Ναι
5	0.275	0.002	0.172	23.274	13.24	56.71	128.897	30.101	23.274	11.637	0.01	Ναι
6	0.270	0.002	0.158	24.832	16.78	54.72	120.814	37.041	24.832	12.416	0.01	Ναι

For the calculation of all the above quantities (angular deflection δ ed and failure deflection Rd) the height Ho shown in the figure above was used.

In both cases the program finds the two nodes with the maximum and minimum displacement respectively and in the first case δ ed is the difference between the two displacements by their horizontal distance L while in the second case by vertical distance Ho. The failure rotations are calculated in the same way.

Finally, the choice of the data reliability level (to obtain the appropriate $\gamma m = \gamma w$) and the way of building the masonry which has to do with the limits in terms of deformations when the pile is controlled by shear (page 7-26 KADET) were added.

6.3 Sizing of the partitions

In order to carry out the dimensioning of the linear members used to simulate the horizontal and vertical friezes, they must first be **unified** and then **dimensioned as single members**.

To consolidate the Horizontal members, select the Consolidate Beams command

and then:

- Either you show the sections of the horizontal divider one by one.
- Either you show the first member and then with the windowed option, all the others.

To consolidate Vertical members, select the Consolidate Members - User command.

This command is mainly used in masonry buildings with vertical reinforced concrete elements that connect the nodes of the surface nodes and that need to be consolidated in order to be dimensioned.

Select the command and then point to the start and end points of the members you want to consolidate.

7. ENHANCIES

SCADA Pro offers the possibility of reinforcing the masonry with:

(Deep Harmony)

- single or double Reinforced Concrete Jacket to increase the compressive, shear and flexural strength of the element
- Inorganic Matrix Mesh (IMM) for in-plane shear reinforcement
- With metal rods
- In addition, in the cases of aid with DeepL to the Harmfulness or with Enmeta, you shall specify the

compressive strength of the reinforced masonry in accordance with the relevant formulas:

$$f_{wc} = \frac{1}{\gamma_{Rd}} \cdot \zeta \cdot f_{wc,o}$$

 $f_{wc,i} = f_{wc,0} (1 + \frac{V_i}{V_w} \frac{f_{c,in}}{f_{wc,0}})$ (Enmeta)

As well as

• with reinforced coating (only in MIP)

Having completed the checks, through the files of the printouts of "Assessment of Masonry", you can read the Characterization of failure that results and reinforce accordingly.

Διαθέσιμα Κεφάλαια	Τεύχος	Μελέ	της		Πλι	ήθος	Σελίδω	v :					_	
- Гενικά	Апотіµг	ιση Τι	oixou:	Ανατολ	ικός_1					Δεδ	ίομένα Κτ	npiou		
- Ανάλυση	An	T		د									1	ike of
Διαστασιολόγηση	Ar	-	_	_	_			-					10	vou : .
Ενισχύσεις	Ar	-					Τοίχος	: 80,000	0				Arronip	had
∝ Σιδηρά « Ξύλινα	Ar	調整	E COL			Ei	αστόσει δος ίπος	 Ω 1 - Λίθιν Διπλι 	ις (†) =5.41 ος Τοίχος ός τοίχος	0m) Yu 30cm	oç (h) = 3 (90(m)		
Τοιχοποιία Αποτίμηση Τοιχοποιίας			-	A Peak		la Es	оцачийа позлати	Πάχος τ ίς αυφάλ	(Carti) 610 Ç. Ye	- 50 (= 2.7)	00 0/1.80	EO8 (82	4.3) / EC8 (&	9,6,(3)
Ανατολικός_1 Ανατολικός_2		100	and the state		a series	E1	άθμη Επ πίπεδο Γ	пелеотик Ушолус	όπητας : ΕΓ1 Περ	Α - DL ορκημένη		a	F _e = 1.35	
Δυτικός_2 Βόρειος_1 Βόρειος_2 Προμέτρηση Υλικών		An	ποχίς]	ίαιχοπο	άμς :	XIMAAM	εριακτηρι ίση θλιπ τοική μεσ τοική μεσ	οτική θλη τική αντο ρακτιδικη η διατμιο ατμητική	πτική αντε χή μ.αντοχή ανταχή ανταχή	an 1111	(Nimm ² (Nimm ² (Nimm ² (Nimm ² w (Nimm ²) =) =) =) =	2.47 3.70 0.10 0.15 0.24	
		<u> </u>					Travri	n ann Xer	which the second	iór fluor	11ÚN			1
			Ypoc	Πάχος	Διατμητικ	ε ή αντ δύι	αχή στοι αμη και	χείου υπ «Δμιφή	6 zičoveti	Δn στοιμ	ετμητική α είου υπό δ	rhoχή +λημηση	Характ-	
		0/3	(cm)	(ciii)	14	D	N	Value	14	D	and a	V6	ριομός	LUY
		1	300.0	50.0	287.2	240 5	29.3	3 8.9	12.3	50	(8P3)	25	Artinusm	3
		2	300.0	50.0	364.8	200.0	0 -0 9	9 0.3	0.3	0.2	99.0	0.1	Διέτμηση	3
			_		-		-	-	-	-	-			-
						_								
					_	_		-	-			_		
			-			-	-	-	-	-	-	-		+
						_	-	-	-	-		-		-
							-	-	-	-	-	-		-
				· · · · · ·	_			-	-	-	-			
			E	ωγχοι Ε	тарина	(floor	tion the l	άρους δι	withne	ή παρομ	որթնուա	¥)		
			110	8. Emm	ADT. A		Στάθ	peç Em	niAzonieć nacionalie	tigraç B	ήΓ			
		a/a	Ň.	N.	19	-	14	-	A.	5	1.0	Επάρκοι		
			(0.0)	000	V _{et} /	M 1	immi	(mm)	(trind)	(mad)	0 ₄₁ / 0 ₅		-	
		1	67.9	2	2	7.3	-					Ogi	-	
		- 6	12.0	- D.	10	(#)	_			-	_	0.00		

111						~	Τεύχ	ος	ετάθμη Επιτελε στικότητας	- Στάθμη Αξιοπιστίας
Περιγρα	φή	111	e		B-SD 🗸	Ανεκτή				
	1	Eµq	ράνιση	Ελεγχος	λόνος	D	Vf1	Vf2	Ved	Τρόπος Δόμησης
l(cm)	378.	89	Pick	Πεσσός 1	0.027(5)	1.00	9.35	15.25	-1.37	Με συμπαγείς πλίνθους
h(cm)	300	1	Pick	Πεσσός 2	0.024(30)	1.79	25.21	27.28	2.49	Κάμψη εκτος επιπέδου
Δέσμευα	סק: 4 ח	ιλευρ	ές ~	Υπερθ. 1	0.092(60)	0.90	4.06	13.72	-1.62	Κλασσική Θεώρηση Θεώρηση Αδρανούς
Νεοσ	5	Evŋ	μέρωση		N					inchio Xi IS
Διαγρα	φή	Ev	ίσχυση	<	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*		>	Προσχέδιο ΚΑΔΕΤ
Ελεγχ	ος	Ελεγ	χος Συνο/	λικά	Αποτελ	έσματα	An	ατελέσματ	α Συνολικά	Έξοδος

ενισχισεις Φερουσας Τοιχοποιιας	^	for modeling with
Διατμητική Ενίσχυση Τοιχοποιίας με ινοπλέγματα ανόργανης μήτρας (IAM)	?	finite surface elements
Ενίσχυση Τοιχοποιίας με Μεταλλικές Ράβδους		
Κάμψη εκτός επιπέδου περί οριζόντιο άξονα	?	
Διάτμηση και Κάμψη εκτός επιπέδου περί κατακόρυφο άξονα	?	
Κάμψη εντός επιπέδου	?	
Ενίσχυση Τοιχοποιίας με ενέματα μάζας	?	
Ενίσχυση Τοιχοποιίας με βαθύ αρμολόγημα	?	
Καθαρισμός Ολων ΟΚ Cancel Ενισχίσεις Φέρουσας Τοιχοποιιας	 X	for modelling by
Διατικτικό Ενίαντιας Τοιγοροίας με ινορλέντατα ανόογανος πότοας (ΤΔΜ)	2	equivalent frame method
Ενίσχυση Τοιχοποιίας με Μεταλλικές Ράβδους		
Κάμψη εκτός επιπέδου περί οριζόντιο άξονα	?	
Διάτμηση και Κάμψη εκτός επιπέδου περί κατακόρυφο άξονα	?	
Κάμψη εντός επιπέδου	?	
Ενίσχυση Τοιχοποιίας με ενέματα μάζας	?	
Ενίσχυση Τοιχοποιίας με βαθύ αρμολόγημα	?	
Ενίσχυση Τοιχοποιίας με Οπλισμένο επίχρισμα	?	
Καθαρισμός Ολων ΟΚ Cancel		

7.1 Reinforcement with mantle

To reinforce a wall with single or double sheathing, in the "Library" of "Masonry" you define the characteristics of the sheathing, which automatically modify the overall characteristics of the original wall.

You set a new name for this reinforced element, which you register, to then use to define your reinforced wall.

πατική οι	πτο πλιθοδομή-Μ2	2 25 cm	N	~	Τύπος 🛛	φιστάμει	ν'n
	Μπατική οπτοπλιί	θοδομή-Μ2 2	i cm		Μανδύας	1.0	
	Principal of the office		10-10-		Πάχος (cm) 10	Δίπλε	υρος ΄
ύπος 🤄	Φέρουσα	✓ Mov	ός τοίχος 🛛 🗸 🗸	?	Σκυρόδεμα	Χάλυβ	ας
νθόσωμα	Οπτόπλιθος κα	oivóc 6x9x19		V	C20/25 ~	S500	19 10
	Πάχος (cm)	25	fb=1.6733 fbc=2.0000 c=15.00		Φ 10 / 10 cm fF	Rdo,c(MP	a)= 0.30
2					Αγκύρωση χωρίς πρό	σθετη μέ	ριμνα .
ονίαμα	Ισιμεντοκονία	іµа-мг			A DECEMBER OF	12	
	Γενικής εφαρμ	ιογής με μελέ	τη συνθέσεως fm=2.0000				
ντηρίδες	? L1 (a	m) 0	t1 (cm) 0 t2 (cm) 0				
καφοειδ	ίής τοίχος						
Ευνολικό	ο πλάτος λωρίδων	κονιάματος () (cm) 0	?			
tef=25.(00 k=0.45 fk=0.3	7944					
		· · · · · · · · · · · · · · · · · · ·				alposic (83621
						walther? (
	14			t1	Οριζόντιος Αρμός πά	χους >1	5 mm
iθόσωμα				t1 .→t2	 Οριζόντιος Αρμός πάχ Πάχος (Ισοδύναμο) (στ 	ηληρος (1 χους >1! n)	5 mm
νθόσωμα	Πάχος (cm)	0		t1	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Πάχος (Ισοδύναμο) (στ	ηλημοίς (1 χους >1! n)	5 mm
νθόσωμα ονίαμα	Πάχος (cm)	0		t1 <u>t2</u>	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Πάχος (Ισοδύναμο) (α Ειδικό Βάρος (KN/m3)	π)	5 mm 45 19.444
νθόσωμα ονίαμα	Πάχος (cm)	0		t1 Βιβλιοθήκη	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Πάχος (Ισοδύναμο) (ση Ειδικό Βάρος (KN/m3) Θλιπτική Αντοχή fk (N/	/mm2)	5 mm 45 19.444 11.0755
ιθόσωμα ονίαμα ντηρίδες	Πάχος (cm)	0 m) 0	t1 (cm) 0 t2 (cm) 0	τι τ2 Βιβλιοθήκη Λιθοσωμάτων Κονιαμάτων	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Ειδικό Βάρος (KN/m3) Θλιπτική Αντοχή fk (N/ Μέτρο Ελαστικότητας (GPa)	n) /mm2)	45 19.444 11.075
υθόσωμα ονίαμα ντηρίδες	Πάχος (cm)	0 m) 0	t1 (cm) 0 t2 (cm) 0	t1 → t2 Βιβλιοθήκη Λιθοσωμάτων Κονισμάτων	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Ειδικό Βάρος (KN/m3) Θλιπτική Αντοχή fk (N/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ	(mm2) (πή 1000	45 19.444 11.0755
νθόσωμα ονίαμα ντηρίδες	Πάχος (cm) ? L1 (ci 0 k=0.00 fk=0.00	0 m) 0	t1 (cm) 0 t2 (cm) 0	t1 Βιβλιοθήκη Λιθοσωμάτων Κονιαμάτων	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Ειδικό Βάρος (ΚΝ/m3) Θλιπτική Αντοχή fk (Ν/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ fvk0 (N/mm2)	/mm2) (mm2) νοχή	45 19.444* 11.0755 13.7746
νιθόσωμα ονίαμα ντηρίδες [tef=0.00 Σκυρόδεμ	Πόχος (cm) ? L1 (ci ο k=0.00 fk=0.00	0 m) 0 000 ck (N/mm2) 1	t1 (cm) 0 t2 (cm) 0 Ιάχος (cm)	τ1 Βιβλιοθήκη Λιθοσωμάτων Κονιαμάτων	Οριζόντιος Αρμός πάτ Οριζόντιος Αρμός πάτ Ειδικό Βάρος (KN/m3) Θλιπτική Αντοχή fk (N/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ fvk0 (N/mm2) Μέγιστη διατμητική Αν	/mm2) /mm2) 000 οχή τοχή	5 mm 45 19.444 11.0755 13.7746 0.1 0.10876
υθόσωμα ονίαμα ντηρίδες tef=0.01 Σκυρόδεμ 220/25	Πάχος (cm) ? L1 (cl 0 k=0.00 fk=0.00 μα πληρώσεως fi	0 m) 0 000 ck (N/mm2) 1 20	t1 (cm) 0 t2 (cm) 0 Ιάχος (cm)	t1 → t2 Βιβλιοθήκη Λιθοσωμάτων Κονισμάτων Νέο Κσταχώρηση	Οριζόντιος Αρμός πά Οριζόντιος Αρμός πά Ειδικό Βάρος (ΚΝ/m3) Θλιπτική Αντοχή fk (Ν/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ fvk0 (N/mm2) Μέγιστη διατμητική Αντ fvkmax (N/mm2) Kαμπτική Αντοχή fxk3	(mm2) (mm2) 1000 σχή τοχή	45 19.4444 11.0755 0.1 0.10876 0.1
υθόσωμα ονίαμα ντηρίδες tef=0.00 Σκυρόδεμ 220/25 ίπεδο Γνα	Πάχος (cm) ? L1 (cl 0 k=0.00 fk=0.00 μα πληρώσεως f	0 m) 0 000 ck (N/mm2) 1 20	t1 (cm) 0 t2 (cm) 0 Ιάχος (cm) 0 Στάθμη Ποιοτικού	t1 Βιβλιοθήκη Λιθοσωμάτων Κονισμάτων Νέο Καταχώρηση	Οριζόντιος Αρμός πάτ Οριζόντιος Αρμός πάτ Ειδικό Βάρος (ΚΝ/m3) Θλιπτική Αντοχή fk (Ν/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ fvk0 (N/mm2) Μέγιστη διατμητική Αντ fvkmax (N/mm2) Kaμπτική Αντοχή fxk1 (N/mm2)	(mmp2) (mm2) 1000 οχή τοχή	45 19.4444 11.0755 13.7746 0.1 0.10876 0.1
υθόσωμα ονίαμα ντηρίδες tef=0.0(Σκυρόδεμ :20/25 inεδο Γνα	Πάχος (cm) ? L1 (ci 0 k=0.00 fk=0.00 μα πληρώσεως fr ώσης ΕΓ1:Γ	0 m) 0 000 ck (N/mm2) 1 20 12piopiojužvn	t1 (cm) 0 t2 (cm) 0 Ιάχος (cm) 0 Στάθμη Ποιοτικού ελέγχου 1	t1 Βιβλιοθήκη Λιθοσωμάτων Κονισμάτων Νέο Νέο Κατοχώρηση Έξοδος	Οριζόντιος Αρμός πάτ Οριζόντιος Αρμός πάτ Ειδικό Βάρος (ΚΝ/m3) Ολιπτική Αντοχή fk (Ν/ Μέτρο Ελαστικότητας (GPa) Αρχική διατμητική Αντ τνκῦ (N/mm2) Καμπτική Αντοχή fxk2 (Ν/mm2) Καμπική Αντοχή fxk2 (Ν/mm2)	/mm2) /mm2) 1000 οχή τοχή Ι	45 19.4444 11.0755 13.7746 0.1 0.10876 0.1 0.2

Select the grid again and through the Calculator window, the sub-grids of the wall that needs reinforcement are identified:

Then within the Grid window you locate the subgrids of this wall and modify **the Quality** and **Thickness**

Δημιουργία Ο	Ομάδων	Πλεγμά	πων						\times
Περιγραφή	Υλικό	Тоіхоп	ΕΝ-Λίθινος Τοί 🗸 🗸						
Στοιχα	eio		Ks (Mpa/cm)	Ο Ισοτ	ропіко	(Ορθοτρ	опко	Γωνία Ο
Plate		\sim	300						
Πυκνότητα	Πλάτο	ος (cm)	Πάχος (cm)) Exx (G	Pa)	10.3	3294978	Gxy (GPa)	4.133179915
0.05 ~	30		70	Eyy (G	Pa)	10.3	3294978	ε (kN/m3)	25.71428571
Περιγρα	φές	Enk	ράν.Πλέγματος	Ezz (G	Pa)	10.3	3294978	atx*10-5	1
Ομάδων Πλε	γμάτων τε		ιεδότητα	vxy(0.	. 1-0. 3)	0		aty*10-5	1
I PLA		5PS	1/5/2 1/5/2 1/6/2	vxz(0.	1-0.3)	0		atxy*10-5	1
		7P S 8P S	1/7/2 1/8/2	vyz(0.	1-0.3)	0		Exx * v	xz = Eyy * vxy
		9P S	1/9/2	Eur	au ta com				
		11P S	1/11/3	EVI	ηρωσι	1	- Χάλυβαα	ς Οπλισμού	OK
		12P S	1/12/2	Δι	αγραφή				
		13P S 14P S	51/13/2 51/14/2(1)		Νέο		5220	~	Εξοδος

Then, repeat the Analysis procedure, updating with the new data, and the reinforced wall checks to obtain the new adequacy ratios, until you manage to obtain ratios less than unity. The process is iterative and can be done as many times as needed.

Masonry with concrete sheathing - Remarks:

What is affected?

The placement of the concrete jacket affects the following:

- the equivalent thickness
- the specific gravity
- the Elasticity Measure
- the characteristic compressive strength
- the characteristic shear strength.

Notes: Since the equivalent thickness and Modulus of Elasticity changes it means that the tension of the elements is different than without sheathing. <u>So I will have change the thickness of the surface elements and rerun analysis.</u>

What controls are in place?

The checks carried out are the same as those carried out on an unjacketed wall. That is, the provisions of Eurocode EC8-3 (Annex C) concerning:

- In-plane shear
- In-plane bending

What parameters are changing?

The changes brought about by the installation of a mantle on a masonry wall relate :

-Equivalent Thickness -Special Weight -Thermal Resistance -Characteristic compressive strength -Elasticity measure

It is obvious that some parameters do not change. There are two reasons:

- 1. Not used or not needed in EC8-3 controls.
- 2. These are parameters that do not change (e.g. shear strength of unloaded masonry) but are used or needed in the EC8-3 checks.

Similar differences are seen in the valuation issue.

Note: But what about the shear strength? Why do I only see "Initial" values?

The reason is that the shear strength depends on the axial load and therefore there is no maximum value that is representative for the whole wall.

To resolve this , in the table in the figure below, there is a column in which the shear strength value for the critical combination is given.

S				Επανέλ	εγχος σ	τε Κάμψη	- Харак	τηρισμός	Πεσσών			
	να Ύψος Π (cm) (ωος Πάχος	Διατμητ	ική αντο δύνα	χή στοιχ μη και κ	είου υπό άμψη	αξονική	Διατμητική αντοχή στοιχείου υπό διάτμηση			Χαρακτη-	
ava		(cm)	H _o (cm)	D (cm)	N (kN)	(x10 ²)	Vi (kN)	D' (cm)	(kPa)	Vr (kN)	ρισμός	2000

Comparison of results before and after insertion of the sheathing in an indicator wall

7.2 Reinforcement with Inorganic Matrix Fiber Mesh (IAM)

Beyond the cloak, for reinforcements:

- 1. with IAM
- 2. with metal bars
- 3. with mass injections
- 4. with deep grouting
- 5. with reinforced coating (only in MIP)

select the Reinforcement command in the window "Masonry - Valuation" and then the reinforcement.

Additionally, next to each reinforcement there is a ? that opens the list of the selected wall's Passes - Overhangs.

We enter the details of the aid and then select the pins and/or lintels where the aid will be applied.

11						~	Τεύχος	27	άθμη Επιτελε	ŧ.	Στάθμη Αξιοπιστίου		
εριγραφή	111								8 - 50 ~	AVENT	ή	1	3
(cm) 378	3.89	Pick	Ελεγχοι	ς λόγος	D	Vf1	Vf2	Ved	õu	Τράπα Με συ	ος Δάμηση ιμησγείς πλ	ς Ινθουί	2
λίσμευση: 4	r nheupé Evoud	ς Υ	Πεσσό. Υπερθ.	1,865 1	1.79	1.44	0.19	-0.14	7.459	Κάμφ [] Κ/	η εκτος επ λασσική Θε	ιπέδου ιώρησι	1
Διαγραφή	Evig	Yuan	<						>		εώρηση Αδ εριοχής	δρανού	<
Ελεγχος	Elicy	ς Σινολ	and .	Αποτελέσμα	па	Αποτελέσματα	Συνολικά	t ti	Εξοδος		ροσχέδιο		
	-	-											
ισχίσεις	théon	Concest T	awan	1961025						38	1		
-	φερυ	οσας ι	OIXONC	ouac	- 10 - 10 - 10	Asiara alŝaj	um un e sudre	nos (1)		~	Envistre	fiction	ούς · Υπέρθυ
Ενίσχυ	τμητικά Ταιχά Ενίσχοι	οσας τ η Ενίσχι ποιίος ι Κά ση Τοιχα	υση Τοιγ με Μεταί άμψη εκτ	οποιίας με ιλικές Ράβί ός επιπέδο ε ινοπλέγμ	ε ινοπλι δους ου περί	έγματα ανόργ Ι οριζόντιο άξ όργανης μήτρ	ανης μήτ ονα οος (IAM)	ρος (Μ	W)	2 7 7	Enikstra	ι Πεσοι για εί	ούς - Υπέρθυ έγχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
Ενίσχυ	τοιχο Ενίσχοι Μέθοι	η Ενίσχι η Ενίσχι ποιίος μ Κά ση Τοιχε	υση Τοιγ με Μεταλ άμψη εκτ οπούος μ οσυού	οιιας οποιίας με Δικές Ράβί ός επιπέδο ει ινοπλέγμ	: ινοπλι δους ου περί στα αν	έγματα ανδργ οριζάντιο άξ οργαντις μήτε 3	ανης μήτ ονα ρας (IAM)	ρος (μ	× × ci 549.4R-	? ? ? 13	Enikeţire 1 I	ι Πεσσι για ελ	ούς - Υπέρθυ εγχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
Ενίσχυ	τμητικά Ταίχο Ενίσχοι Μέθοζ	ή Ενίσχι ποιίος (Κά αη Τοιχεδι	υση Τοις με Μεταλ άμψη εκτ οπούος μ οσμού	οποιίας με Οικές Ράβί ός επιπέδο κ τνοπλέγμ ΑCT 5 Εμθο	: ινοπλι δους ου περί ατα αν 19.4R-1 δό πλέγ	έγματα ανόργ ι οριζόντιο άξ όργανης μήτρ 3 ιματος Af(mm2/	ανης μήτ ονα σας (IAM)	ρος (μ Α	× (CI 549.4R- riantafiliou	? ? 13 & Antor	Envern 1 P 3 P	(2000	ούς - Υπέρθυ αγχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
Ενίσχυ	τοιχο Ενισχυή Μέθοζ	η Ενίσχι ποιίος (Κά ση Τοιχο	υση Τοις με Μεταλ άμψη εκτ οποιώος μ οσμού	οποιίας με Ολικές Ράβί ός επιπέδα ε ινοπλέγμ ΑCT 5 Εμβο Αρθ	: ινοπλι δους ου περί ατα αν 49.4R-1 δό πλέγ μός Στρ	έγματα ανδργ οριζόντιο άξ όργανης μητρ 3 ματος Af(mm2/ ώσεων	ανης μήτ ονα οας (IAM) 5 2	ρος (μ ο	× ICI 549.4R-	? ? 13 13 8 Antor ?	Envictor	(2000	ούς Υπέρθυ κηχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
Ενίσχυ Ενίσχυ ματμητισή	ταιχο Ενισχυι Μέθοι	η Ενίσχη ποιίος ; Κά αη Τοιχο	υση Τοις με Μεταλ άμψη εκτ οπούος μ οσμού	οποιίας με οποιίας με Δικές Ράβλ ος επιπέδο ος επιστείο ος επιστείο	: Ινοπλι δους ου περί ατα αν θ. 4R-1 δό πλέγ μός Στρ	έγματα ανόργ ο οριζόντιο άξ ο όργανης μήτε 3 ματος Af(mm2/ ώσεων και απο τις 2 πί	ανης μήτ ονα οας (ΙΑΜ) (IAM) (IAM) (IAM)	ρος (1/ → Α	× CI 549.4R-	? ? 13 8. Antor ? ?	Envicement	(2000	ούς - Υπέρθυ αγχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
		ή Ενίσχι ποιίος ; κά αη Τοιχείος Σχεδι	υση Τοιγ με Μεταλ άμψη εκτ ποιώος μ οσμού	οποίας με ός επιπέδο ές ενιπέδο κ ενοπλέγμ Ας15 Εμβο Αρθ Ξτοχ Μέτρ	ς ινοπλύ δους ου περί ατα αν 90.4R-1 δό αλέγ μός Στρ γίσχυση εία Ενία ο Ελίασ	έγματα ανόργ οργανης μήτρ 3 ματος Af(mm2/ ώστων και απο τις 2 πί χωσης πκάτητος Ef (G	ιανης μήτ ονα σας (IAM)		M)	2 7 7 13 13 8 Antor 7 2	Envicine	τ Πεσσι γιο Ε	ούς - Υπέρθυ κοχο Πεσσός 1 Πεσσός 2 Υπερθ. 1
		ή Ενίσχι οποίος) κα αη Τοιχο ίος Σχοδι	υση Τοιχ με Μεταλ άμψη εκτ οπούος μ ασμού	οποιίας με οιοοιίας με Δικές Ράβλ ός επιπέδο ός επιπέδο ός επιπέδο ός επιπέδο ός επιπέδο ός επιπέδο ός επιπέδο ός επιπέδο ματημέρο ματημεριστημα ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημεριστημα ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημέρο ματημείο ματημα ματημεριστημα ματημα ματημεριστημα ματημα α α τημα α α τημα α α τημα α α α τημα α α τημα α α α α α α α α α α α α α α α α α α	ε Ινοηλύ δους ου περί ατα αν 99 R- 1 δό πλέγ μός Στρ γοία Ένία το Έλασ	έγματα ανόργ οργανης μήτε 3 ματος Af(mm2/ ώσεων και απο τις 2 πί χωσης πκότητος Ef (G αμάρφωση είμ	ονα ονα (IAM) (IA	рас (У А О Т	AM)	7 7 13 11 & Anto 7 ?	Envice re	E REDOR	ούς - Υπέρθυ αγχο Πεσσός 1 Πεσσός 2 Υπερθ. 1

talat	in The	γ αφούς - Υπίρθυρα ι ελεγγο
1.0	7	Парарія 1
2	-	Renotic 2
	4	Πεσσές Ξ
4	~	Парада; 4
5	4	flagger 5
Ð.	1	Henote 6
1		Vmcp6,1
8	-	Vmap8.2
		Ymup0, J
10		Упаре.4
п		Yeaue, S
12		Утар 0 , 6
13		Ymap0.7
14		Υπερθ.8
15	-	Ynut, 9 v

The use of Fiber Grids for in-plane shear reinforcement is defined via the corresponding window and for the wall selected from the list.

Furthermore

Select the "Design Method".

SCADA Pro includes two methods and you can choose between

ACI 549.4R-13	~
ACI 549.4R-13	
Triantafillou & Antonopoulos (2000)	

Define the characteristics of the mesh, based on catalogues and according to the materials of the trade.

Sika

A In SCADA Pro have been imported the materials of the companies

By selecting the company and the corresponding material, the characteristics of the mesh are automatically filled in by the program.

Μέθοδος Σχεδιασμού	ACI 549.4R-13	
	Εμβαδό πλέγματος Af(mm2/m)	158
and the	Αριθμός Στρώσεων	0
Υλικά ΙΑΜ	🗙 τυση και απο τις 2 ηλευρέ	ς
CDDM 200	κι Ενίσχυσης	
CDDM 200	λαστικότητος Ef (GPa)	240
CDDM 300 GDDM 290	Παραμόρφωση εία	0.019
OK Cancel	M4C s	ika
		-

Μέθοδος Σχεδιασμού	ACI 549.4R-13	
	Εμβαδό πλέγματος Af(mm2/	m) 47.31
with	Αριθμός Στρώσεων	0
Υλικά ΙΑΜ	Χ υση και απο τις 2 π/	λευρές
SikaWrap-350G Grid	Ενίσχυσης	-
	αστικότητας Ef (G	Pa) 80
OK Ca	ncei	

Then press the "Checks" button again and check the results obtained after inserting the grid. You can repeat the process. The program checks each time taking into account the last characteristics you set.

7.3 Reinforcement with metal rods

In SCADA Pro have been integrated the reinforcements with metal rods in load-bearing masonry beams and is now automatically checked in tension in case the above reinforcement with metal rods has been placed and whether a concrete jacket (one-sided or two-sided) has been placed.

DARADE 10	@funn	OLC AND	mod	100+30					
11111					*	Τεύχος	2	anedmore	Zroftun Alfonemiac
Παριγραφή	111	111						A-DL -	Avascri
(cm) 1	(cm) 1318.7 Pick EXe/30 h(cm) 570 Pick Narris		ene Mivee	vfi	vr2	Ved A	Τρόπος άδμησης		
h(cm) 32			nue	oc 1 1.426(1)	1.23	a.s1 69.	69.29	-12.	He ownovel; n/h/Gour
Megunuers 4 nAnunis; -		Пера	0c2 1.060(1)	2.24	10.92	126, 19	-11,	Κάμιμη ακτος εκεπίδου	
		Tana	6c 3 0.376[1]	2.00	4.61	112.67	-1.7	Κλασακή Θεώρηση	
Διαγραφή	1	vienuori	€	0,7 1.127(1)	0.01	7.10	12.03	*	Sataoliula: vobovorić
Brink	EV	vanc filma	int	AnoreAdousto	AsoreAda	το το του		Etaloc	Thornes K.A.A.E.
τισχίσει	ς Φέ Διστι	ρουσας μητική Ει	Τοιχι	οποιιας m Toixonoiac	με ινοπλέ	το ανό	ovavn	ς μήτρας (Ι	(AM) ?
τι σχίσει Ενίσχι	ς Φέ Διατι	ρουσας μητική Ει Γοιχοποιία	Τοιχα νίσχυα	οποιιας η Τοιχοποιίας Μεταλλικές Ρά	με ινοπλέ άβδους	γματα ανό	ογανη	ς μήτρας (Ι	(AM) ?
έν σχίσει Ενίσχι	ς Φέ Διστι υση Τ	ρουσας μητική Ει Γοιχοποιία	Τοιχι νίσχυα ας με Ι Κάμ	οποιιας η Τοιχοποιίας Μεταλλικές Ρά ψη εκτός επιτ	με ινοπλέ ίβδους ιέδου περ	γματα ανό; ί οριζόντιο ό	ογανη	ς μήτρας (Ι	AM) ?
	ς Φέ Διστι, υση Ί	ρουσας μητική Ει Γοιχοποιία	Τοιχι νίσχυα ας με Ι Κάμ	οποιιας η Τοιχοποιίας Μεταλλικές Ρά ψη εκτός επιτ	με ινοπλέ άβδους ιέδου περ	γματα ανόι ί οριζόντιο ά	ογανη άξονα	ς μήτρας (Ι	AM) ?
	ς Φέ Διση, υση Ί	ρουσας υητική Ει Γοιχοποιία Διάτμη	Τοιχι νίσχυα ος με Ι Κάμ ση κα	οποιιας η Τοιχοποιίας Μεταλλικές Ρά ψη εκτός επιτ ι Κάμψη εκτόι	με ινοπλέ άβδους ιέδου περ ς επιπέδου	γματα ανόι ί οριζόντιο ά υ περί καται	ογανη άξονα κόρυφ	ς μήτρας (Ι ο άξονα	AM) ?
	ς Φέι Διστι υση Τ	ρουσας υητική Ει Γοιχοποιία Διάτμη	Τοιχν νίσχυα ας με Ι Κάμ ση κα	οποιιας η Τοιχοποιίας Μεταλλικές Ρά ψη εκτός επιτ ι Κάμψη εκτό Κάμψη	με ινοπλέ άβδους ιέδου περ ς επιπέδοι εντός επι	γματα ανό ί οριζόντιο ό ι περί καται πέδου	ογανη άξονα κόρυφ	ς μήτρος (Ι ιο άξονα	× AM) ? ? ? ?

• Bending out of plane about the <u>horizontal</u> axis. Tensile pickup.

Shear and bending out of plane about <u>a vertical</u> axis. .

Διάτμηση και Κάμ	ιψη ε	κτός επιπέδου περί κατακόρυφο άξονα	
		Πλήθος ράβδων ανα εφελκυόμενη παρειά	5
		Εμβαδό διατομής ράβδου As(mm2)	7.3
		Μέτρο Ελαστικότητας Es (GPa)	500
	H	Μέση τάση διαρροής Fsy(MPa)	979.45
		Εφελλαστική αντοχή διαρροής Fy (kN)	7,149985

In-plane bending. Ενίσχυση Τοιχοποιίας με Μεταλλικές Ράβδους Х Κάμψη εντός επιπέδου Πλήθος ράβδων ανα εφελκυόμενη παρειά 5 Εμβαδό διατομής ράβδου As(mm2) 7.3 Μέτρο Ελαστικότητας Es (GPa) 500 Μέση τάση διαρροής Fsy(Μ 979.45 Εφελκυστική αντοχή διαρροής Fy (kN) 7.149985 EM4C ОК Cancel

We can manually set all the requested sizes or simply select the EM4C command and a corresponding

Υλικό			\times	
STATIBAR 4.	5mm	43	\sim	
OK		Cancel		
				, so that they are automatically entered by the

material from program.

٠

Below is an example explaining the amplification process in detail:

EXAMPLE:

We will look separately at pins and lintels.

				2	Στοιχεία	και Χαρα	ακτηρισμ	ός Πεσσ	ών			
~/~	γψος	Πάχος	Διατμητ	ικήαντο δύνα	χή στοιχε αμη και κα	είου υπό άμψη	αξονική	Δια στοιχε	τμητική αντ ίου υπό διά	οχή πμηση	Χαρακτη-	Z7
۵/a	(cm)	(cm)	H₀ (cm)	D (cm)	N (kN)	V _d (x10 ⁻³)	Vr (kN)	D' (cm)	f _{⊭d} (kPa)	V _f (kN)	ρισμός	2000
1	570.0	65.0	360.1	123.0	-1.9	1.2	0.3	105.9	86.7	59.6	Κάμψη	3
2	570.0	65.0	461.9	224.0	-34.1	11.7	8.2	224.0	86.7	126.2	Κάμψη	2
3	570.0	65.0	461.2	200.0	-8.7	3.4	1.9	200.0	86.7	112.7	Κάμψη	3
4	570.0	65.0	1140.0	81.0	-3.3	3.1	0.1	81.0	86.7	45.6	Κάμψη	3
5	570.0	65.0	399.5	121.0	-4.9	3.1	0.7	121.0	86.7	68.2	Κάμψη	3
6	570.0	65.0	484.5	116.8	-122.2	80.5	13.4	116.8	86.7	65.8	Κάμψη	1

	Έλεγχοι Επάρκειας Πεσσών σε όρους δυνάμεων ή παραμορφώσεων													
<i>a</i> / <i>a</i>	Στάθ). Επιτελε (Δυνάμειο	εστ. Α ς)	Στο	Επάρχεια									
u/u	V _{ed} (kN)	Vr (kN)	V _{ed} / V _f	u _j (mm)	u _l (mm)	δ _{ed} (mrad)	δ _u (mrad)	δ_{ed} / δ_{u}	Спаркеіа					
1	1.8	0.3	5.7						Οχι					
2	-17.4	8.2	2.1						Οχι					
3	-2.1	1.9	1.1						Οχι					
4	-1.5	0.1	12.6						Οχι					
5	-0.9	0.7	1.2						Οχι					
6	16.8	13.4	1.3						Οχι					

In in-plane testing for all 6 pins the dominant magnitude is bending and none have adequacy. In this case they will be reinforced in in-plane bending.

By pressing the "Enhance" button the following dialog box appears

Κάμψη εντός επιπέδου									
	Πλήθος ράβδων ανα εφελκυόμενη παρειά	2							
	Εμβαδό διατομής ράβδου As(mm2)	7.3							
	Μέτρο Ελαστικότητας Es (GPa)	500							
	Μέση τόση διαρροής Fsy(MPa)	979.45							
	Εφελκυστική αντοχή διαρροής Fy (kN)	7.149985							
· · · ·	EM4C OK	Cancel							

give the details of the aid and then select the pins to which the aid will be applied (in this case all 6)

			Х								
Επιλ	Επιλεξτε Πεσσούς - Υπέρθυρα για ελεγχο										
1	~	Πεσσός 1	^								
2	~	Πεσσός 2									
3	\checkmark	Πεσσός 3									
4	V	Πεσσός 4									
5	 Image: A start of the start of	Πεσσός 5									
6	\checkmark	Πεσσός 6									
7		Υπερθ. 1									
8		Υπερθ. 2									
9		Υπερθ. 3									
10		Υπερθ. 4									
11		Υπερθ. 5									
12		Υπερθ. 6									
13		Υπερθ. 7									
14		Υπερθ. 8									
15		Υπερθ. 9	¥								
	ОК	Cancel									

We run the checks again and then in a separate printout we get the results of the amplification.

										ξελίδα : 6	
-					Τοίχο	c: 11111				-	
			Evi	σχυση Το	ιχοποιία		λλικές ρά	βδους			
				Ενίσχυσ	η σε κόμ	ψη εντός	επιπέδο	U			
E) M	ιήθος ρά ιβαδόν δ έτρο Ελα	βδων ανά ιατομής ρά στικότητας	εφελκυόμε άβδου (mm ; E _s (GPa)	νη παρειά = 2) = 7.3 = 500.00	2	E	ίέση τάση ί φελκυστική	διαρροής Fsy ή αντοχή δια	γ (MPa) = 97 οροής Fy (kN)	9.45 = 7.15	
				'EA	εγχος Πα	σσών	5× 1	14	ē.v	1	
al a	'Υψος (cm)	Πάχος (cm)	M _{co} (kNm)	N _{to} (kN)	x (m)	M _{ns} (kNm)	Meg/Mag	Επάρκωα	Συνδυασμός		
	570.0	65.0	-0.49	-1.89	0.02	15.43	0.032	Nai	3	1	
	570.0 65.0 -10.90 -34.14 0.0				0.05	64.17	0.170	Nai	2	1	
	570.0 65.0 -10.90 -34.14 0.0 570.0 65.0 -5.57 -34.07 0.0					57.03	0.098	Nai	2		
	570.0	65.0	+0.19	-13.34	0.03	14.24	0.014	Nai	2		
	570.0	65.0	-0.19	-4.85	0.02	16.91	0.011	Nai	3	1	
	570.0	65.0	-1.42	-166.28	0.20	96.20	0.015	Nai	2	1	
_	-	-					-	-		-	
								5			
]	
_	-	-				-	-		-	-	
n	L the pi	ns we	even ha	ave an c	out-of-	olane fa	ailure p	arallel t	o the hori	」 zontal joi	int as shown be
	Επαν	έλεινιος σ	τε Κάμμιη	- Έλεννος	Επάρκει	ας ΚΔΛ	Ε Τ. παο	7 3 Στάθμη	Επιτελεστικ	ότητας Δ	1
	t t	Έλεγχο	ς σε κάμψι	η εκτός επι οριζόντιο	πέδου πα αρμό	ράλληλα σ	тоу	Έλεγχος σε παράλληλα	κάμψη εκτός α στον κατακόρι	επιπέδου υφο αρμό	1
a	a (cm)	σ _d (kN/m2)	M Rd1,c		Med	/ ET	τά Μ	Rd2,0 N	Aled Med/	Επά	

ala	t		op	οιζόντιο αρ	μó		παράλ	ληλα στον	κατακόρυφα	ο αρμό
u/u	(cm)	σ₄ (kN/m2)	M _{Rd1,0} (kNm)	M _{≊d} (kNm)	Med/ Mindle	Επά οκεια	M Rd2,0 (kNm)	M _{ed} (kNm)	M _{Ed} / M _{Rd2.0}	Επά ρκεια
1	65.0	6.23	1.61	-2.63	1.63	Οχι	59.46	0.07	0.00	Ναι
2	65.0	23.44	10.92	-1.59	0.15	ΙΝαι	59.46	-0.17	0.00	Ναι
3	65.0	26.21	10.88	-0.54	0.05	Ναι	59.46	-0.24	0.00	Ναι
4	65.0	6.27	1.07	-0.04	0.03	Ναι	59.46	-0.12	0.00	Ναι
5	65.0	27.73	6.96	-1.10	0.16	Ναι	59.46	-0.16	0.00	Ναι
6	65.0	11.61	2.84	-2.21	0.78	Ναι	59.46	0.48	0.01	Ναι
Στον	παραπο	άνω πίνακα στ	ονυπολογισι	ι ό των αντοχώ	ι υν. αν έχει το τ	ι Γοθεπηθεί μανδ	δύας σκυροδέ	ματος ή οπλι	ι σμένα επιχρίσ	ματα έχει
ληφθ	εί υπόψ	νη η αύξηση π	ης αντοχής με	βάση την σχέ	ση Σ6.4 του H	(.A.Δ.Ε.Τ.				

We go to the corresponding reinforcement and give the data of the metal bars. The results are printed in a separate printout

Τοίχος : 11111
Ενίσχυση Τοιχοποιίας με μεταλλικές ράβδους
Ενίσχυση σε κάμψη εκτός επιπέδου παράλληλα στον οριζόντιο αρμό

Πλήθος ράβδων ανά εφελκυόμενη παρειά = 2 Εμβαδόν διατομής ράβδου (mm2) = 7.30 Μέτρο Ελαστικότητας Ε_s (GPa) = 500.00

Μέση τάση διαρροής Fsy (MPa) = 979.45

Εφελκυστική αντοχή διαρροής Fy (kN) = 7.15

	Έλεγχος Πεσσών													
α/ α	Μήκος (cm)	Πάχος (cm)	M _{Ed} (kNm)	N _{Ed} (kN)	x (m)	P _{r.v} (m)	M _{Rd} (kNm)	${ m M}_{ m Ed}/{ m M}_{ m Rd}$	Επάρκεια	Συνδυασμός				
1	123.0	65.0	-2.63	-153.56	0.11	1.08	49.86	0.053	Ναι	2				
2	224.0	65.0												
3	200.0	65.0												
4	81.0	65.0												
5	121.0	65.0												
6	116.8	65.0												

We then look at the transoms.

		Αποτίμη	ιση									
				Στ	οιχεία κα	αι Χαρακ	τηρισμός	; Υπέρθυ	ιρων			
ala	Ύψος	Πάχος	Διατμητ	ική αντο δύνο	χή στοιχε ιμη και κι	είου υπό άμψη	αξονική	Δια στοιχε	τμητική αντ ίου υπό διά	οχή άτμηση	Χαρακτη-	Sung
u/u	(cm)	(cm)	H₀ (cm)	D (cm)	N (kN)	Vd (x10 ⁻³)	Vr (kN)	D' (cm)	f _{/d} (kPa)	Vr (kN)	ρισμός	2000
7	102.0	65.0	94.4	245.0	2.3						Εφελκυσμός	1
8	102.0	65.0	70.9	95.4	-0.8						Εφελκυσμός	3
9	98.0	65.0	86.5	353.0	-3.3	0.7	6.7	49.5	86.7	27.9	Κάμψη	3
10	98.0	65.0	62.8	96.2	-0.2						Εφελκυσμός	3
11	98.0	65.0	171.1	353.0	- <mark>8.8</mark>	1.9	9.1	254.8	86.7	143.5	Κάμψη	1
12	98.0	65.0	196.0	96.2	2.0						Εφελκυσμός	1
13	83.0	65.0	166.0	245.0	1.5						Εφελκυσμός	1
14	83.0	65.0	166.0	142.0	1.0						Εφελκυσμός	1
15	72.0	65.0	144.0	245.0	2.7						Εφελκυσμός	1
16	72.0	65.0	144.0	155.0	11.0						Εφελκυσμός	1
\vdash												

	Έλεγχοι Επάρκειας Υπέρθυρων σε όρους δυνάμεων ή παραμορφώσεων													
ala	Στάθ). Επιτελι (Δυνάμει	εστ. Α ς)	Στο	άθμες Επ (Πα	ιτελεστικ ραμορφύ	ότητας Ε ύσεις)	βήΓ	Επάρκεια					
u/u	V _{ed} (kN)	Vr (kN)	V _{ed} / V _f	u _j (mm)	u _l (mm)	δ _{ed} (mrad)	δ _u (mrad)	δ _{ed} / δ _u	Спаркела					
7									Οχι					
8									Οχι					
9	-23.6	6.7	3.5						Οχι					
10									Οχι					
11	-30.1	9.1	3.3						Οχι					
12									Οχι					
13									Οχι					
14									Οχι					
15									Οχι					
16									Οχι					

There are some lintels that fail in tension. Until now in SCADA Pro if an element failed in tension no further check was done. With the addition of the ability to reinforce in tension this criterion has changed and if the tensile reinforcement is sufficient, as shown below all other checks are now performed as well.

IMPORTANT OBSERVATION.

It should be clarified that in SCADA Pro until now, when a tensile stress occurred, the combination with the corresponding worst tensile axial (positive) was indicated. In the new version of SCADA Pro, when a tensile stress occurs even in a combination, the designation is indicated in the corresponding field. However, the combination number and the corresponding line items do not belong to the tensile combination but to the combination that gives the worst ratio in the in-plane adequacy check (it is the check below).

					Τοίχος	: 11111					Αποτίμη	ση
				Στ	οιχεία κα	αι Χαρακ	τηρισμός	; Υπέρθυ	ιρων			
~/~	Ύψος	Πάχος	Διατμητ	ική αντο δύνα	τοχή στοιχείου υπό αξονική νναμη και κάμψη			Διατμητική αντοχή στοιχείου υπό διάτμηση			Χαρακτη-	55
u/u	(cm)	(cm)	H₀ (cm)	D (cm)	N (kN)	v₀ (x10 ⁻³)	Vr (kN)	D' (cm)	f _{vd} (kPa)	Vr (kN)	ρισμός	2000
7	102.0	65.0	94.4	245.0	2.3						Εφελκυσμός	1
8	102.0	65.0	70.9	95.4	-0.8						Εφελκυσμός	3
9	98.0	65.0	86.5	353.0	-3.3	0.7	6.7	49.5	86.7	27.9	Κάμψη	3
10	98.0	65.0	62.8	96.2	-0.2						Εφελκυσμός	3
11	98.0	65.0	171.1	353.0	- <mark>8.8</mark>	1.9	9.1	254.8	86.7	143.5	Κάμψη	1
12	98.0	65.0	196.0	96.2	2.0						Εφελκυσμός	1
13	83.0	65.0	166.0	245.0	1.5						Εφελκυσμός	1
14	83.0	65.0	166.0	142.0	1.0						Εφελκυσμός	1
15	72.0	65.0	144.0	245.0	2.7						Εφελκυσμός	1
16	72.0	65.0	144.0	155.0	11.0						Εφελκυσμός	1

In the case of superlattice 8, it is observed that its failure is characterized as tensile but the axial force is negative (compression). This means that combination 3 whose data are listed is the combination with the worst in-plane check ratio, while obviously the tensile is from another combination. To find out which combination has the worst tensile ratio, we need to add reinforcement to negate the tensile problem in the lintels that require it. It is important to emphasize here that we should always address the tensile and then and with the appearance of the other checks we can move on to other reinforcements if they are required.

Tensile strength is given by the option for out-of-plane bending strength about the horizontal axis.

After entering the reinforcement data and checking again we get the following results.

Τοίχος : 11111 Ενίσχυση Τοιχοποιίας με μεταλλικές ράβδους

Ενίσχυση για Εφελκυσμό

Πλήθος ράβδων ανά εφελκυόμενη παρειά = 2 Εμβαδόν διατομής ράβδου (mm2) = 7.30 Μέτρο Ελαστικότητας Ε_s (GPa) = 500.00 Μέση τάση διαρροής Fsy (MPa) = 979.45

Εφελκυστική αντοχή διαρροής Fy (kN) = 7.15

		Έλεγ	γος Πεα	σών	
α/α	N _{Ed} (kN)	F _y (kN)	N_{Ed}/F_y	Επάρκεια	Συνδυασμός
1					
2					
3					
4					
5					
6					

		Έλεγχ	ος Υπέρ	θυρων	
α/α	N _{Ed} (kN)	Fy (kN)	$N_{\rm Ed}/F_{\rm y}$	Επάρκεια	Συνδυασμός
7	6.06	28.60	0.212	Ναι	2
8	4.41	28.60	0.154	Ναι	2
9					
10	3.37	28.60	0.118	Ναι	2
11					
12	6.77	28.60	0.237	Ναι	2
13	1.47	28.60	0.051	Ναι	1
14	3.22	28.60	0.113	Ναι	2
15	6.43	28.60	0.225	Ναι	2
16	13.79	28.60	0.482	Ναι	2

All transoms except 9 and 11, which had no problem, no longer have a tensile problem.

The same result would have been obtained if a reinforced concrete sheath had been installed The sheathed tensile test is shown in a separate printout We then reopen the controls.

					Τοίχος	: 11111					Αποτίμη	ση
				Στ	οιχεία κα	αι Χαρακ	τηρισμός	; Υπέρθυ	ιρων			
ala	Ύψος	Πάχος	Διατμητ	ική αντο δύνο	χή στοιχε ιμη και κ	είου υπό άμψη	αξονική	Δια στοιχε	τμητική αντ ίου υπό διά	οχή ατμηση	Χαρακτη-	Συνδ
uru	(cm)	(cm)	H₀ (cm)	D (cm)	N (kN)	Vd (x10 ⁻³)	Vr (kN)	D' (cm)	f _{vd} (kPa)	Vr (kN)	ρισμός	2000
7	102.0	65.0	94.4	245.0	2.3	0.0	0.0	245.0	86.7	138.0	Εφελκυσμός	1
8	102.0	65.0	70.9	95.4	-0.8	0.6	0.5	95.4	86.7	53.7	Εφελκυσμός	3
9	98.0	65.0	86.5	353.0	-3.3	0.7	6.7	49.5	86.7	27.9	Κάμψη	3
10	98.0	65.0	62.8	96.2	-0.2	0.1	0.1	0.0	86.7	0.0	Εφελκυσμός	3
11	98.0	65.0	171.1	353.0	-8.8	1.9	9.1	254.8	86.7	143.5	Κάμψη	1
12	98.0	65.0	196.0	96.2	2.0	0.0	0.0	96.2	86.7	54.2	Εφελκυσμός	1
13	83.0	65.0	166.0	245.0	1.5	0.0	0.0	245.0	86.7	138.0	Εφελκυσμός	1
14	83.0	65.0	166.0	142.0	1.0	0.0	0.0	142.0	86.7	80.0	Εφελκυσμός	1
15	72.0	65.0	144.0	245.0	2.7	0.0	0.0	245.0	86.7	138.0	Εφελκυσμός	1
16	72.0	65.0	144.0	155.0	11.0	0.0	0.0	155.0	86.7	87.3	Εφελκυσμός	1

Έλεγχοι Επάρκειας Υπέρθυρων σε όρους δυνάμεων ή παραμορφώσεων										
Στάθ. Επιτελεστ. Α (Δυνάμεις)			Στο	Στάθμες Επιτελεστικότητας Β ή Γ (Παραμορφώσεις)						
V _{ed} (kN)	Vr (kN)	V _{ed} / V _f	u _j (mm)	u _l (mm)	δ _{ed} (mrad)	δ _u (mrad)	δ_{ed} / δ_{u}	Спаркаа		
-2.1	138.0	0.0						Οχι		
-4.5	53.7	8.6						Οχι		
-23.6	6.7	3.5						Οχι		
-3.1	0.0	235.2						Οχι		
-30.1	9.1	3.3						Οχι		
4.5	54.2	0.0						Οχι		
-0.3	138.0	0.0						Οχι		
6.3	80.0	0.0						Οχι		
7.9	138.0	0.0						Οχι		
2.1	87.3	0.0						Οχι		
	Έλεγ Στάθ Ves (kN) -2.1 -4.5 -23.6 -3.1 -30.1 4.5 -0.3 6.3 7.9 2.1	Έλεγχοι Επάβ Στάθ. Επιτελε (Δυνάμει Ved Vr (kN) (kN) -2.1 138.0 -4.5 53.7 -23.6 6.7 -3.1 0.0 -30.1 9.1 4.5 54.2 -0.3 138.0 6.3 80.0 7.9 138.0 2.1 87.3 - - - -	Έλεγχοι Επάρκειας Υπέ Στάθ. Επιτελεστ. Α (Δυνάμεις) Ved Vr -2.1 138.0 0.0 -4.5 53.7 8.6 -23.6 6.7 3.5 -3.1 0.0 235.2 -30.1 9.1 3.3 4.5 54.2 0.0 -0.3 138.0 0.0 6.3 80.0 0.0 2.1 87.3 0.0	Έλεγχοι Επάρκειας Υπέρθυρων Στάθ. Επιτελεστ. Α (Δυνάμεις) Στά Ved Vr (unit) -2.1 138.0 0.0 -4.5 53.7 8.6 -23.6 6.7 3.5 -3.1 0.0 235.2 -30.1 9.1 3.3 4.5 54.2 0.0 -0.3 138.0 0.0 6.3 80.0 0.0 7.9 138.0 0.0 2.1 87.3 0.0	Έλεγχοι Επάρκειας Υπέρθυρων σε όρους Στάθ. Επιτελεστ. Α (Δυνάμεις) Στάθμες Επ (Πα) Vest Vr uj uj (kN) Vr Vest / Vr uj uj -2.1 138.0 0.0 - - -2.3.6 6.7 3.5 - - -3.1 0.0 235.2 - - -3.1 9.1 3.3 - - -0.3 138.0 0.0 - - -0.3 138.0 0.0 - - -3.1 80.0 0.0 - - -3.1 9.1 3.3 - - -3.1 9.1 0.0 - - -3.1 0.0 - - - -3.1 0.0 - - - -3.3 138.0 0.0 - - -3.1 - - - - - -3.3 13	Έλεγχοι Επάρκειας Υπέρθυρων σε όρους δυνάμεις Στάθ. Επιτελεστ. Α (Δυνάμεις) Στάθμες Επιτελεστικ (Παραμορφά Vest Vr (kN) Vr (kN) Vest / Vr (kN) uj (mm) uj (mm) δed (mrad) -2.1 138.0 0.0 - - - -4.5 53.7 8.6 - - - -23.6 6.7 3.5 - - - - -3.1 0.0 235.2 -<	Έλεγχοι Επάρκειας Υπέρθυρων σε όρους δυνάμεων ή παρ Στάθ. Επιτελεστ. Α (Δυνάμεις) Στάθμες Επιτελεστικότητας Ε (Παραμορφώσεις) Vest Vr (kN) Vr (kN) Vest / Vr (kN) uj (mm) uj (mm) main fragmentication (mrad) -2.1 138.0 0.0 - - - -2.1 138.0 0.0 - - - -2.3.6 6.7 3.5 - - - -3.1 0.0 235.2 - - - -3.1 9.1 3.3 - - - - -0.3 138.0 0.0 - - - - - -0.3 138.0 0.0 -	Έλεγχοι Επάρκειας Υπέρθυρων σε όρους δυνάμεων ή παραμορφώσει Στάθ. Επιτελεστ. Α (Δυνάμεις) Στάθμες Επιτελεστικότητας Β ή Γ (Παραμορφώσεις) Vest Vr (kN) Vest / Vr uj (mm) uj (mm) δed (mrad) δu (mrad) δed / δu (mrad) -2.1 138.0 0.0 - - - -2.1 138.0 0.0 - - - -2.3.6 6.7 3.5 - - - -3.1 0.0 235.2 - - - -3.1 9.1 3.3 - - - - -3.1 9.1 3.3 - - - - - -3.1 9.1 3.3 -		

It should be noted that there is no difference in the initial characterisation. Where there is a difference is in the appearance of more checks for the other forms of failure in order to identify deficiencies that will probably be addressed by reinforcements that are made, where necessary, as in the pickets.

7.4 Strengthening with mass injections and deep grouting

- Reinforcement with mass injections (homogenization)
- Reinforcement with deep grouting

• Reinforcement with mass grout is based on paragraph 8.1.2 of the KADET.

E	Ενίσχυση Τοιχοποιίας									
	Ενίσχυση Τοιχοποιίας με ενέματα μάζας									
	Πάχος Εφαρμογής <mark>(</mark> r	100								
	Ειδικό βάρος υλικού	19								
	Θλιπτική Αντοχή Fgr	,c (Mpa)	34							
	Είδος Ενέματος	Υδραυλικής Ασβέστου	~							
	Είδος Τοιχοποιίας	Δίστρωτη	~							
	EM4C	ОК С	Cancel							

An EM4C reinforcement material has been incorporated.

The application thickness of the reinforcement has to do with the total volume of grout mass required (for three-layer) and the total grout mass weight required (for disc and single-layer) to be used. These quantities are calculated based on the voids in the masonry that will be filled (backfilled) with the grout. The application thickness shall be such that its ratio to the total thickness of the wall is

equal to the ratio of the volume of the voids (to be filled with the grout) to the total volume of the wall. For example, if the volume of the wall voids is 20% of the total wall volume and the total wall thickness is 500 mm, the application thickness is defined as 500*0.2= 100 mm.

	Έλεγχος Πεσσών										
α/	Μήκος (cm)	Πάχος		Μέση Θλιπτική Αντοχή fm (N/mm2)				Μέση Διατμητική Αντοχή fvm0 (N/mm2)			
a/ a 1 2 3 4		(cm)	Αρχική	Με Ένεμα	Με Αρμολόγημα	Τελική	Αρχική	Τελική			
1	150.0	25.0	1.14	2.13	1	2.13	0.15	0.30			
2	200.0	25.0	1.14	2.13		2.13	0.15	0.30			
3	200.0	25.0	1.14	2.13		2.13	0.15	0.30			
4	150.0	25.0	1.14	2.13		2.13	0.15	0.30			
-											
_											

In the results we now see the new average compressive strength

We also see the new average shear strength fvm0.

It is recalled that the initial fvm0 is derived from the corresponding characteristic shear strength fvk0 (which is a given of the masonry) based on the relationship of the KAN.EPE.

 $f_{vm0} = min(1.5 \cdot f_{vk0}, f_{vk0} + 0.05 (MPa)),$

(CEE - Annex 4.1 (§2.b))

From then on, the two new strength values and the new bending moment are used in the calculations, where appropriate.

For example for a wall before reinforcement

	Επίπεδο Γνώσης. ΕΓ1:Περιορισ	μένη			CF _m =	1.35
Αντοχές Τοιχοποιίας :	Χαρακτηριστική θλιπτική αντοχή	ť,	(N/mm ²)	=	0.79	
	Μέση θλιπτική αντοχή	f.,	(N/mm*)	=	1.14	
	Αρχική χαρακτ.διατμ.αντοχή	f.ec	(N/mm ²)	=	0.10	
	Αρχική μέση διατμ.αντοχή	f.mo	(N/mm*)	=	0.15	
	Μέγιστη διατμητική αντοχή	formation	(N/mm*)	=	0.07	1.8

and for the same wall after reinforcement

Επίπεδο Γνώσης: ΕΓ1:Περιορισμένη 1.35 CFm = Χαρακτηριστική θλιπτική αντοχή f, (N/mm⁴ = 0.79 Μέση θλιπτική αντοχή 2.12 fm (N/mm* Αρχική χαρακτ.διατμ.αντοχή 0.10 f_{re0} (N/mm* Αρχική μέση διατμ.αντοχή funa (N/mm* 0.30 Μέγιστη διατμητική αντοχή 0.14 (N/mm formax

• Reinforcement with deep grouting

The deep grouting method is essentially a method of replacing the old mortar with new mortar with improved mechanical characteristics. This results in an increase in the compressive strength of the masonry in accordance with the provisions of paragraph **8.1.1 of the KADET**.

Ενίσχυση Τοιχοποιίας	X								
Ενίσχιση Τοιχοποιίας με βαθύ αρμολόγημα									
Πάχος Εφαρμογής (mm) 62.5									
Ευπειρική σταθερά κ	5								
EM4C OK Cance	el								

As far as the thickness of application is concerned, the requirement is the ratio of the volume of the new mortar of the grout to the total volume of the old mortar. Since the new grout will be applied to the existing joints, we enter the depth of the new grout in this field. If the new grout is to be applied on both sides, this value is multiplied by 2. For example, if the new grout will be 5 cm deep both sides of the wall then enter the value 100 mm.

The corresponding results are shown below:

α/ α	Μήκος Πάχος		Μέση Θλιτ fm (πτική Αντοχή N/mm2)	Μέση Διατμητική Αντοχ fvm0 (N/mm2)			
	(ciii)	(cm)	Αρχική	Με Ένεμα	Με Αρμολόγημα	Τελική	Αρχική	μητική Αντοχή (N/mm2) Τελική 0.15 0.15 0.15 0.15
1	150.0	25.0	1.14		1.82	1.82	0.15	0.15
2	200.0	25.0	1.14		1.82	1.82	0.15	0.15
3	200.0	25.0	1.14		1.82	1.82	0.15	0.15
4	150.0	25.0	1.14		1.82	1.82	0.15	0.15

Grouting improves only the compressive strength and the corresponding sizes affected by it. If both types of reinforcement are used, the final result is the ratio of the sum of the individual new strengths multiplied by their respective application thickness, divided by the sum of the two application thicknesses.

Finally, a new button has been added to the reinforcements dialog box which deletes all reinforcements that have been placed on the given wall.

7.5 Show reasons for depletion with Color Grading

Valuation(EC8-3)

- 1. Bending within level
- 2. Bending out of plane parallel to the horizontal joint
- 3. Bending out of plane perpendicular to the horizontal joint
- 4. Out-of-plane bending parallel to the vertical joint (II)
- 5. Out-of-plane bending parallel to the horizontal joint (II)
- 6. In-plane bending with reinforcement initial control
- 7. Bending within level with reinforcement
- 8. Bending out of plane parallel to the horizontal joint with reinforcement
- 9. Bending out of plane parallel to the vertical joint with reinforcement
- 10. Shear with reinforcement with metal bars
- 11. Shear with IAM reinforcement
- 12. Tensile with reinforcement with metal bars
- 13. Tensile with concrete sheathing reinforcement

OBSERVATIONS

Each pessary and each lintel shall be coloured with a single colour corresponding to the depletion ratio. When the walls are painted, a white outline is drawn around the pins and lintels.

At this point it should be emphasized that if the initial characterization is Tensile or eccentricity the program does not make any further checks. In this case the wall is delineated:

In-plane bending is the initial control

	Έλεγχοι Επάρκειας Πεσσών σε όρους δυνάμεων ή παραμορφώσεων										
α/α	Στάθ. Επιτελεστ. Α (Δυνάμεις)			Στο	Στάθμες Επιτελεστικότητας Β ή Γ (Παραμορφώσεις)						
	V _{ed} (kN)	Vr (kN)	V _{ed} / V _f	u _j (mm)	u _l (mm)	δ _{ed} (mrad)	δ _u (mrad)	δ _{ed} / δ _u	Спаркеіа		
1	11.0	22.2	0.5						Ναι		
2	33.1	16.2	2.1						Οχι		

Select the in-plane bend

See for example for the two pips the reasons included in the previous printout.

For out-of-plane bending, when we have a performance level A (checks in terms of forces) the first way is the classical consideration which is indicated at the bottom of the printout. The second mode (inert area consideration) is that indicated by (II) and is shown at the top of the printout.

For example, you choose the out-of-plane bend parallel to the horizontal joint (II). It is with an inactive area view. The result is shown at the top of the printout for that wall (2 passes and 2 lintels).

		Επανέ/	λεγχος σε	Κάμψη - Έ	λεγχος Επ	άρκειας Σ
	t	Έλεγχος	σεκάμψηε οσ	κτός επιπέζ αρι	δου παράλλ μό	νηλα στον
α/α	(cm)	σd	M Rd1,o	Med	Med/	Επά
		(kN/m2)	(kNm)	(kNm)	M Rd1,o	ρκεια
1	50.0	65.79	19.03	-2.95	0.16	Ναι
2	50.0	218.83	30.86	1.38	0.04	Ναι
Στον ληφθ	παραπά εί υπόψ	άνω πίνακα στ η η αύξηση τη	ον υπολογισμ ις αντοχής.	ιό των αντοχώ	υν, αν έχει το π	roθετηθεί μανδ

Επανέλεγχος σε Κάμψη - Έλεγχος Επάρκειας Στο											
		Έλεγχος	Έλεγχος σε κάμψη εκτός επιπέδου παράλληλα στον								
α/α	t (cm)	οριζοντιο αρμο									
	(ciii)	σd	M Rd1,o	Med	Med/	Επά					
~	50.0	(KIN/m2)	(KINM)	(KINM)	M Rd1,0	ρκεια	+				
3	50.0	60.05	7.00	5.68	0.81	Ναι	—				
4	50.0	0.71	0.13	-0.08	0.63	Ναι					
							\top				
							+				
							+				
							+				
							+				
							—				
							Τ				
							+				
							+				
							+				
							+				
							+				
							\perp				
Στον ληφθ	παραπα εί υπόψ	άνω πίνακα στ ιη η αύξηση τη	ον υπολογισμ ις αντοχής.	ιό των αντοχώ	υν, αν έχει τοπ	roθεπηθεί μαν	δύα:				

and the corresponding colour representation

The same logic is followed in the part of the controls concerning aid. One observation concerning selection:

• In-plane bending with reinforcement initial control This check generally gives results identical to the selection:

• Bending within level

The results are different if the initial characterisation is tensile or eccentricity so in the test without reinforcement you do not get results while with reinforcement the tensile is overcome and you get results.